Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Icons Added #151

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Amplitude-Frequency-Visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@
],
]

_VARS["window"] = sg.Window("Mic to frequency plot + Max Level", layout, finalize=True)
_VARS["window"] = sg.Window("Mic to frequency plot + Max Level", layout,icon="icons/amp-freq.ico", finalize=True)
graph = _VARS["window"]["graph"]

# INIT vars:
Expand Down
380 changes: 190 additions & 190 deletions Intensity-vs-Frequency-and-time.py
Original file line number Diff line number Diff line change
@@ -1,190 +1,190 @@
import PySimpleGUI as sg
import pyaudio
import numpy as np
import scipy.fft
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import subprocess

"""Realtime Sound Intensity vs Frequency heatmap"""

# VARS CONSTS:
_VARS = {"window": False, "stream": False, "audioData": np.array([]), "current_visualizer_process": None}

# pysimpleGUI INIT:
AppFont = "Any 16"
sg.theme("DarkBlue3")

# Heatmap plot:
layout = [

[
sg.Graph(
canvas_size=(500, 500),
graph_bottom_left=(-2, -2),
graph_top_right=(102, 102),
background_color="#809AB6",
key="graph",
)
],
[sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")],
[
sg.Button("Listen", font=AppFont),
sg.Button("Stop", font=AppFont, disabled=True),
sg.Button("Exit", font=AppFont),
],
]
_VARS["window"] = sg.Window("Mic to Sound Intensity vs Frequency heatmap", layout, finalize=True)
graph = _VARS["window"]["graph"]

# INIT vars:
CHUNK = 1024 # Samples: 1024, 512, 256, 128
RATE = 44100 # Equivalent to Human Hearing at 40 kHz
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen
TIMEOUT = 10 # In ms for the event loop
pAud = pyaudio.PyAudio()

# PySimpleGUI plots:
def drawHeatMapWithLabels(intensity_data):
graph.erase() # Clear previous heatmap
rows, cols = intensity_data.shape

# Draw labels for frequency axis
for row in range(rows):
graph.DrawText(f"{row * (RATE / 2) / rows:.0f} Hz", (105, 100 - row * 100 / rows))

# Draw labels for time axis
for col in range(cols):
graph.DrawText(f"{col * INTERVAL:.1f} sec", (col * 100 / cols, -5))

# Draw heatmap
for row in range(rows):
for col in range(cols):
intensity = intensity_data[row, col]
color = getHeatMapColor(intensity)
x1 = col * 100 / cols
y1 = 100 - (row + 1) * 100 / rows
x2 = x1 + 100 / cols
y2 = y1 + 100 / rows
graph.DrawRectangle((x1, y1), (x2, y2), line_color=color, fill_color=color)

# pyaudio stream:
def stop():
if _VARS["stream"]:
_VARS["stream"].stop_stream()
_VARS["stream"].close()
_VARS["stream"] = None
_VARS["window"]["-PROG-"].update(0)
_VARS["window"]["Stop"].Update(disabled=True)
_VARS["window"]["Listen"].Update(disabled=False)

# callback:
def callback(in_data, frame_count, time_info, status):
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16)
return (in_data, pyaudio.paContinue)

def listen():
_VARS["window"]["Stop"].Update(disabled=False)
_VARS["window"]["Listen"].Update(disabled=True)
_VARS["stream"] = pAud.open(
format=pyaudio.paInt16,
channels=1,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
stream_callback=callback,
)
_VARS["stream"].start_stream()

def close_current_visualizer():
if _VARS["current_visualizer_process"] and _VARS["current_visualizer_process"].poll() is None:
_VARS["current_visualizer_process"].kill()

# INIT:

def initHeatMap(graph, rate, interval, rows, cols):

# Clear previous drawing

graph.erase()

#Initial setup for the heatmap

for row in range(rows):

graph.DrawText(f"{row * (rate / 2) / rows:.0f} Hz", (105, 100 - row * 100 / rows))



# Draw labels for time axis

for col in range(cols):

graph.DrawText(f"{col * interval:.1f} sec", (col * 100 / cols, -5))



# Call the initHeatMap function to initialize the heatmap

rows = 10 # Number of rows in the heatmap

cols = 10 # Number of columns in the heatmap

initHeatMap(graph, RATE, INTERVAL, rows, cols)

# Function to get heatmap color
def getHeatMapColor(intensity, threshold=0.0, cmap=None):
# Default color map
if cmap is None:
cmap = ["#0000ff", "#00ff00", "#ffff00", "#ff0000"] # Blue to Red gradient

# Determining color based on intensity and thresholds
if np.isnan(intensity):
return "#808080" # Gray color for NaN values
else:
# Normalizing intensity to fit within the colormap range
intensity_norm = np.log1p(intensity) / 20 # Logarithmic scale for better visualization
color_index = min(int(intensity_norm * len(cmap)), len(cmap) - 1)
return cmap[color_index]

def compute_intensity_data(audio_data, window_size=1024, hop_size=512):
num_frames = len(audio_data) // hop_size
intensity_data = np.zeros((num_frames, window_size // 2))

for i in range(num_frames):
frame = audio_data[i * hop_size: (i + 1) * hop_size]
intensity_data[i, :] = np.abs(np.fft.fft(frame)[:window_size // 2]) # Magnitude spectrum
return intensity_data

# MAIN LOOP
while True:
event, values = _VARS["window"].read(timeout=TIMEOUT)
if event in (sg.WIN_CLOSED, "Exit"):
close_current_visualizer()
stop()
pAud.terminate()
break
# for handling the closing of application
if event == sg.WIN_CLOSED :
_VARS["stream"].stop_stream()
_VARS["stream"].close()
pAud.terminate()
break
if event == "Listen":
listen()
if event == "Stop":
stop()

# Along with the global audioData variable, this
# bit updates the waveform plot
elif _VARS["audioData"].size != 0:
# Update volume meter
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"]))

# Compute intensity data for heatmap
intensity_data = compute_intensity_data(_VARS["audioData"])

# Draw heatmap
drawHeatMapWithLabels(intensity_data)

_VARS["window"].close()
import PySimpleGUI as sg
import pyaudio
import numpy as np
import scipy.fft
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import subprocess
"""Realtime Sound Intensity vs Frequency heatmap"""
# VARS CONSTS:
_VARS = {"window": False, "stream": False, "audioData": np.array([]), "current_visualizer_process": None}
# pysimpleGUI INIT:
AppFont = "Any 16"
sg.theme("DarkBlue3")
# Heatmap plot:
layout = [
[
sg.Graph(
canvas_size=(500, 500),
graph_bottom_left=(-2, -2),
graph_top_right=(102, 102),
background_color="#809AB6",
key="graph",
)
],
[sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")],
[
sg.Button("Listen", font=AppFont),
sg.Button("Stop", font=AppFont, disabled=True),
sg.Button("Exit", font=AppFont),
],
]
_VARS["window"] = sg.Window("Mic to Sound Intensity vs Frequency heatmap", layout,icon="icons/inten-vs-freq.ico", finalize=True)
graph = _VARS["window"]["graph"]
# INIT vars:
CHUNK = 1024 # Samples: 1024, 512, 256, 128
RATE = 44100 # Equivalent to Human Hearing at 40 kHz
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen
TIMEOUT = 10 # In ms for the event loop
pAud = pyaudio.PyAudio()
# PySimpleGUI plots:
def drawHeatMapWithLabels(intensity_data):
graph.erase() # Clear previous heatmap
rows, cols = intensity_data.shape
# Draw labels for frequency axis
for row in range(rows):
graph.DrawText(f"{row * (RATE / 2) / rows:.0f} Hz", (105, 100 - row * 100 / rows))
# Draw labels for time axis
for col in range(cols):
graph.DrawText(f"{col * INTERVAL:.1f} sec", (col * 100 / cols, -5))
# Draw heatmap
for row in range(rows):
for col in range(cols):
intensity = intensity_data[row, col]
color = getHeatMapColor(intensity)
x1 = col * 100 / cols
y1 = 100 - (row + 1) * 100 / rows
x2 = x1 + 100 / cols
y2 = y1 + 100 / rows
graph.DrawRectangle((x1, y1), (x2, y2), line_color=color, fill_color=color)
# pyaudio stream:
def stop():
if _VARS["stream"]:
_VARS["stream"].stop_stream()
_VARS["stream"].close()
_VARS["stream"] = None
_VARS["window"]["-PROG-"].update(0)
_VARS["window"]["Stop"].Update(disabled=True)
_VARS["window"]["Listen"].Update(disabled=False)
# callback:
def callback(in_data, frame_count, time_info, status):
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16)
return (in_data, pyaudio.paContinue)
def listen():
_VARS["window"]["Stop"].Update(disabled=False)
_VARS["window"]["Listen"].Update(disabled=True)
_VARS["stream"] = pAud.open(
format=pyaudio.paInt16,
channels=1,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
stream_callback=callback,
)
_VARS["stream"].start_stream()
def close_current_visualizer():
if _VARS["current_visualizer_process"] and _VARS["current_visualizer_process"].poll() is None:
_VARS["current_visualizer_process"].kill()
# INIT:
def initHeatMap(graph, rate, interval, rows, cols):
# Clear previous drawing
graph.erase()
#Initial setup for the heatmap
for row in range(rows):
graph.DrawText(f"{row * (rate / 2) / rows:.0f} Hz", (105, 100 - row * 100 / rows))
# Draw labels for time axis
for col in range(cols):
graph.DrawText(f"{col * interval:.1f} sec", (col * 100 / cols, -5))
# Call the initHeatMap function to initialize the heatmap
rows = 10 # Number of rows in the heatmap
cols = 10 # Number of columns in the heatmap
initHeatMap(graph, RATE, INTERVAL, rows, cols)
# Function to get heatmap color
def getHeatMapColor(intensity, threshold=0.0, cmap=None):
# Default color map
if cmap is None:
cmap = ["#0000ff", "#00ff00", "#ffff00", "#ff0000"] # Blue to Red gradient
# Determining color based on intensity and thresholds
if np.isnan(intensity):
return "#808080" # Gray color for NaN values
else:
# Normalizing intensity to fit within the colormap range
intensity_norm = np.log1p(intensity) / 20 # Logarithmic scale for better visualization
color_index = min(int(intensity_norm * len(cmap)), len(cmap) - 1)
return cmap[color_index]
def compute_intensity_data(audio_data, window_size=1024, hop_size=512):
num_frames = len(audio_data) // hop_size
intensity_data = np.zeros((num_frames, window_size // 2))
for i in range(num_frames):
frame = audio_data[i * hop_size: (i + 1) * hop_size]
intensity_data[i, :] = np.abs(np.fft.fft(frame)[:window_size // 2]) # Magnitude spectrum
return intensity_data
# MAIN LOOP
while True:
event, values = _VARS["window"].read(timeout=TIMEOUT)
if event in (sg.WIN_CLOSED, "Exit"):
close_current_visualizer()
stop()
pAud.terminate()
break
# for handling the closing of application
if event == sg.WIN_CLOSED :
_VARS["stream"].stop_stream()
_VARS["stream"].close()
pAud.terminate()
break
if event == "Listen":
listen()
if event == "Stop":
stop()
# Along with the global audioData variable, this
# bit updates the waveform plot
elif _VARS["audioData"].size != 0:
# Update volume meter
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"]))
# Compute intensity data for heatmap
intensity_data = compute_intensity_data(_VARS["audioData"])
# Draw heatmap
drawHeatMapWithLabels(intensity_data)
_VARS["window"].close()
Loading