Skip to content

Commit

Permalink
Fix hj.Grid.interpolate for numpy values; return nans on extrap…
Browse files Browse the repository at this point in the history
…olation

Fixes #5.
  • Loading branch information
schmrlng committed Dec 3, 2023
1 parent c9b8029 commit 068103b
Show file tree
Hide file tree
Showing 2 changed files with 86 additions and 2 deletions.
7 changes: 5 additions & 2 deletions hj_reachability/grid.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,13 +119,16 @@ def interpolate(self, values, state):
weight_hi = position - index_lo
weight_lo = 1 - weight_hi
index_lo, index_hi = tuple(
jnp.where(self._is_periodic_dim, index % np.array(self.shape), jnp.clip(index, 0, np.array(self.shape)))
jnp.where(self._is_periodic_dim, index % np.array(self.shape), jnp.clip(index, 0,
np.array(self.shape) - 1))
for index in (index_lo, index_hi))
weight = functools.reduce(lambda x, y: x * y, jnp.ix_(*jnp.stack([weight_lo, weight_hi], -1)))
# TODO: Double-check numerical stability here and/or switch to `tuple`s and `itertools.product` for clarity.
return jnp.sum(
result = jnp.sum(
weight[(...,) + (np.newaxis,) * (values.ndim - self.ndim)] *
values[jnp.ix_(*jnp.stack([index_lo, index_hi], -1))], list(range(self.ndim)))
return jnp.where(jnp.any(~self._is_periodic_dim & ((state < self.domain.lo) | (state > self.domain.hi))),
jnp.nan, result)

@property
def _is_periodic_dim(self) -> Array:
Expand Down
81 changes: 81 additions & 0 deletions hj_reachability/grid_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
from absl.testing import absltest
import jax
import jax.numpy as jnp
import numpy as np

from hj_reachability import grid as _grid
from hj_reachability import sets


class BoundaryConditionsTest(absltest.TestCase):

def setUp(self):
np.random.seed(0)

def test_grid_interpolate(self):
grid_domain = sets.Box(np.zeros(2), np.ones(2))
grid_shape = (3, 2)
grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape, periodic_dims=1)
values = np.random.random((3, 2))
np.testing.assert_allclose(grid.interpolate(values, np.array([0.25, 2.75])), np.mean(values[0:2, 0:2]))
np.testing.assert_allclose(grid.interpolate(values, np.zeros(2)), values[0, 0])
np.testing.assert_allclose(grid.interpolate(values, np.ones(2)), values[-1, 0])
values = np.random.random((3, 2, 3, 4))
np.testing.assert_allclose(grid.interpolate(values, np.array([0.75, 2.75])), np.mean(values[1:3, 0:2], (0, 1)))
np.testing.assert_allclose(grid.interpolate(values, np.zeros(2)), values[0, 0])
np.testing.assert_allclose(grid.interpolate(values, np.ones(2)), values[-1, 0])

def test_grid_interpolate_on_grid(self):
grid_domain = sets.Box(jnp.zeros(2), jnp.ones(2))
grid_shape = (3, 4)
for value_shape in ((), (5,)):
values = jnp.array(np.random.random(grid_shape + value_shape))
grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape)
np.testing.assert_allclose(jax.vmap(jax.vmap(lambda x: grid.interpolate(values, x)))(grid.states),
values,
atol=1e-6)

grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape, periodic_dims=0)
states = grid.states + (grid._is_periodic_dim * np.arange(-3, 4)[:, None, None, None] *
(grid.domain.hi - grid.domain.lo))
np.testing.assert_allclose(jax.vmap(jax.vmap(jax.vmap(lambda x: grid.interpolate(values, x))))(states),
np.broadcast_to(values, states.shape[:1] + values.shape),
atol=1e-6)

def test_grid_interpolate_off_grid(self):
grid_domain = sets.Box(jnp.zeros(2), jnp.ones(2))
grid_shape = (3, 4)
for value_shape in ((), (5,)):
a = np.random.random((2,) + value_shape)
grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape)
values = grid.states @ a
states = grid.domain.lo + np.random.random((100, 2)) * (grid.domain.hi - grid.domain.lo)
np.testing.assert_allclose(jax.vmap(lambda x: grid.interpolate(values, x))(states), states @ a, atol=1e-6)

grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape, periodic_dims=0)
values = jnp.array(np.random.random(grid_shape + value_shape))
grid_unwrapped = _grid.Grid.from_lattice_parameters_and_boundary_conditions(
grid.domain, tuple(d + 1 if p else d for d, p in zip(grid.shape, grid._is_periodic_dim)))
values_unwrapped = jnp.concatenate([values, values[:1]])
states = states + (grid._is_periodic_dim * np.arange(-3, 4)[:, None, None] *
(grid.domain.hi - grid.domain.lo))
np.testing.assert_allclose(jax.vmap(jax.vmap(lambda x: grid.interpolate(values, x)))(states),
jax.vmap(jax.vmap(lambda x: grid_unwrapped.interpolate(values_unwrapped, x)))
((states - grid.domain.lo) % (grid.domain.hi - grid.domain.lo) + grid.domain.lo),
atol=1e-6)

def test_grid_interpolate_extrapolate_nan(self):
grid_domain = sets.Box(jnp.zeros(2), jnp.ones(2))
grid_shape = (3, 4)
for value_shape in ((), (5,)):
values = jnp.array(np.random.random(grid_shape + value_shape))
grid = _grid.Grid.from_lattice_parameters_and_boundary_conditions(grid_domain, grid_shape)
states = grid.domain.lo + (grid.domain.hi - grid.domain.lo) * np.array(
[[0.5 + dx, 0.5 + dy] for dx in [-1, 0, 1] for dy in [-1, 0, 1] if dx or dy])
result = jax.vmap(lambda x: grid.interpolate(values, x))(states)
self.assertEqual(result.shape, (8,) + value_shape)
self.assertTrue(np.all(np.isnan(result)))


if __name__ == "__main__":
absltest.main()

0 comments on commit 068103b

Please sign in to comment.