A drop-in replacement for the torch.nn.Conv2d layer that uses the Kolmogorov-Arnold Network (KAN) as a convolutional kernel.
Currently, supports grouped convolution, padding with different modes, dilation, and stride.
The KAN implementation is taken from the https://github.com/Blealtan/efficient-kan/ repository.
From PyPI:
pip install convkan
From source:
git clone [email protected]:StarostinV/convkan.git
cd convkan
pip install .
Training a simple model on MNIST (96% accuracy after the first epoch):
import torch
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from convkan import ConvKAN, LayerNorm2D
# Define the model
model = nn.Sequential(
ConvKAN(1, 32, padding=1, kernel_size=3, stride=1),
LayerNorm2D(32),
ConvKAN(32, 32, padding=1, kernel_size=3, stride=2),
LayerNorm2D(32),
ConvKAN(32, 10, padding=1, kernel_size=3, stride=2),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
).cuda()
# Define transformations and download the MNIST dataset
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False)
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-2)
# Train the model
model.train()
pbar = tqdm(train_loader)
for i, (x, y) in enumerate(pbar):
x, y = x.cuda(), y.cuda()
optimizer.zero_grad()
y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
pbar.set_description(f'Loss: {loss.item():.2e}')
model.eval()
correct = 0
total = 0
with torch.no_grad():
pbar = tqdm(test_loader)
for x, y in pbar:
x, y = x.cuda(), y.cuda()
y_hat = model(x)
_, predicted = torch.max(y_hat, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
pbar.set_description(f'Accuracy: {100 * correct / total:.2f}%')