primesieve is a command-line program and C/C++ library for quickly generating prime numbers. It is very cache efficient, it detects your CPU's L1 & L2 cache sizes and allocates its main data structures accordingly. It is also multi-threaded by default, it uses all available CPU cores whenever possible i.e. if sequential ordering is not required. primesieve can generate primes and prime k-tuplets up to 264.
primesieve generates primes using the segmented sieve of Eratosthenes with wheel factorization. This algorithm has a run time complexity of operations and uses memory. Furthermore primesieve uses the bucket sieve algorithm which improves the cache efficiency when generating primes > 232. primesieve uses 8 bytes per sieving prime, hence its memory usage is about bytes per thread.
The primesieve command-line program can be installed using your operating system's
package manager. For doing development with libprimesieve you may need
to install libprimesieve-dev
or libprimesieve-devel
.
Windows: | winget install primesieve |
macOS: | brew install primesieve |
Arch Linux: | sudo pacman -S primesieve |
Chocolatey: | choco install primesieve |
Debian/Ubuntu: | sudo apt install primesieve |
Fedora: | sudo dnf install primesieve |
FreeBSD: | pkg install primesieve |
openSUSE: | sudo zypper install primesieve |
# Count the primes below 1e10 using all CPU cores
primesieve 1e10
# Print the primes below 1000000
primesieve 1000000 --print
# Print the twin primes below 1000000
primesieve 1000000 --print=2
# Count the prime triplets inside [1e10, 1e10+2^32]
primesieve 1e10 --dist=2^32 --count=3
Usage: primesieve [START] STOP [OPTION]...
Generate the primes and/or prime k-tuplets inside [START, STOP]
(< 2^64) using the segmented sieve of Eratosthenes.
Options:
-c, --count[=NUM+] Count primes and/or prime k-tuplets, NUM <= 6.
Count primes: -c or --count (default option),
count twin primes: -c2 or --count=2,
count prime triplets: -c3 or --count=3, ...
--cpu-info Print CPU information (cache sizes).
-d, --dist=DIST Sieve the interval [START, START + DIST].
-h, --help Print this help menu.
-n, --nth-prime Find the nth prime.
primesieve 100 -n: finds the 100th prime,
primesieve 2 100 -n: finds the 2nd prime > 100.
--no-status Turn off the progressing status.
-p, --print[=NUM] Print primes or prime k-tuplets, NUM <= 6.
Print primes: -p or --print,
print twin primes: -p2 or --print=2,
print prime triplets: -p3 or --print=3, ...
-q, --quiet Quiet mode, prints less output.
-s, --size=SIZE Set the sieve size in KiB, SIZE <= 8192.
By default primesieve uses a sieve size that
matches your CPU's L1 cache size (per core) or is
slightly smaller than your CPU's L2 cache size.
--test Run various sieving tests.
-t, --threads=NUM Set the number of threads, NUM <= CPU cores.
Default setting: use all available CPU cores.
--time Print the time elapsed in seconds.
-v, --version Print version and license information.
You need to have installed a C++ compiler which supports C++11 (or later) and CMake โฅ 3.4.
cmake .
make -j
sudo make install
sudo ldconfig
Include the <primesieve.hpp>
header to use libprimesieve's C++ API.
#include <primesieve.hpp>
#include <iostream>
int main()
{
primesieve::iterator it;
uint64_t prime = it.next_prime();
// Iterate over the primes below 10^6
for (; prime < 1000000; prime = it.next_prime())
std::cout << prime << std::endl;
return 0;
}
Include the <primesieve.h>
header to use libprimesieve's C API.
#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>
int main()
{
primesieve_iterator it;
primesieve_init(&it);
uint64_t prime;
/* Iterate over the primes below 10^6 */
while ((prime = primesieve_next_prime(&it)) < 1000000)
printf("%" PRIu64 "\n", prime);
primesieve_free_iterator(&it);
return 0;
}
-
primesieve::iterator::next_prime()
runs up to 2x faster and uses only half as much memory asprev_prime()
. Oftentimes algorithms that iterate over primes usingprev_prime()
can be rewritten usingnext_prime()
which improves performance in most cases. -
primesieve::iterator
is single-threaded. See the multi-threading section for how to parallelize an algorithm using multipleprimesieve::iterator
objects. -
The
primesieve::iterator
constructor and theprimesieve::iterator::skipto()
method take an optionalstop_hint
parameter that can provide a significant speedup if the sieving distance is relatively small e.g.ย <ย sqrt(start). Ifstop_hint
is setprimesieve::iterator
will only buffer primes up to this limit. -
Many of libprimesieve's functions e.g.
count_primes(start, stop)
&nth_prime(n, start)
incur an initialization overhead of O(sqrt(start)) even if the total sieving distance is tiny. It is therefore not a good idea to call these functions repeatedly in a loop unless the sieving distance is sufficiently large e.g. >ย sqrt(start). If the sieving distance is mostly small consider using aprimesieve::iterator
instead to avoid the recurring initialization overhead.
By default libprimesieve uses multi-threading for counting primes/k-tuplets
and for finding the nth prime. However primesieve::iterator
the most
useful feature provided by libprimesieve runs single-threaded because
it is simply not possible to efficiently parallelize the generation of primes
in sequential order.
Hence if you want to parallelize an algorithm using primesieve::iterator
you need to implement the multi-threading part yourself. The basic technique
for parallelizing an algorithm using primesieve::iterator
is:
- Subdivide the sieving distance into equally sized chunks.
- Process each chunk in its own thread.
- Combine the partial thread results to get the final result.
The C++ example below calculates the sum of the primes โค 1010 in parallel
using OpenMP. Each thread processes a
chunk of size (dist / threads) + 1
using its own primesieve::iterator
object. The OpenMP reduction clause takes care of adding the partial
prime sum results together in a thread safe manner.
#include <primesieve.hpp>
#include <iostream>
#include <omp.h>
int main()
{
uint64_t sum = 0;
uint64_t dist = 1e10;
int threads = omp_get_max_threads();
uint64_t thread_dist = (dist / threads) + 1;
#pragma omp parallel for reduction(+: sum)
for (int i = 0; i < threads; i++)
{
uint64_t start = i * thread_dist;
uint64_t stop = std::min(start + thread_dist, dist);
primesieve::iterator it(start, stop);
uint64_t prime = it.next_prime();
for (; prime <= stop; prime = it.next_prime())
sum += prime;
}
std::cout << "Sum of the primes below " << dist << ": " << sum << std::endl;
return 0;
}
Build instructions
# Unix-like OSes
wget https://kimwalisch.github.io/primesieve/primesum.cpp
c++ -O3 -fopenmp primesum.cpp -o primesum -lprimesieve
time ./primesum
c++ -O3 primes.cpp -lprimesieve
cc -O3 primes.c -lprimesieve
If you have built libprimesieve yourself,
then the default installation path is usually /usr/local/lib
. Running
the ldconfig
program after make install
ensures that Linux's dynamic
linker/loader will find the shared primesieve library when you execute your program.
However, some OSes are missing the ldconfig
program or ldconfig
does
not include /usr/local/lib
by default. In these cases you need to export
some environment variables:
export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=/usr/local/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=/usr/local/include:$C_INCLUDE_PATH
cl /O2 /EHsc /MD primes.cpp /I "path\to\primesieve\include" /link "path\to\primesieve.lib"
If you are using the CMake build system to compile your program and
libprimesieve is installed on your
system, then you can add the following two lines to your CMakeLists.txt
to link your
program against libprimesieve.
find_package(primesieve REQUIRED)
target_link_libraries(your_program primesieve::primesieve)
To link against the static libprimesieve use:
find_package(primesieve REQUIRED static)
target_link_libraries(your_program primesieve::primesieve)
- Example CMakeLists.txt for C programs
- Example CMakeLists.txt for C++ programs
primesieve natively supports C and C++ and has bindings available for:
Common Lisp: | cl-primesieve |
Julia: | PrimeSieve.jl |
Nim: | primesievec-nim |
Haskell: | primesieve-haskell |
Pascal: | primesieve-pas |
Perl: | Primesieve |
Python: | primesieve-python |
Raku: | raku-primesieve |
Ruby: | primesieve-ruby |
Rust: | primesieve.rs |
Many thanks to the developers of these bindings!