Skip to content

TBR-DQ/Machine-Learning-2022F

 
 

Repository files navigation

header pic

Machine Learning

The course material for Machine Learning.

The lab material

  1. Lab Introduction
  2. Preliminary
  3. Naïve-Bayes
  4. Linear Regression
  5. Decision Tree & Random Forest
  6. Multilayer Perceptron (MLP)
  7. Convolutional Neural Network
  8. Detection and tracking *
  9. SVM
  10. K-mean
  11. EM clustering
  12. Hidden Markov Model
  13. Grape Model *
  14. Markov Decision Process (MDP)
  15. Reinforcement Learning *
  16. Final Project

Authors

  • Jia Yanhong

About

Machine-Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%