Skip to content

Commit

Permalink
update deepseek-vl2 hyperparams
Browse files Browse the repository at this point in the history
  • Loading branch information
woodfrog committed Jan 20, 2025
1 parent 896490e commit 0eb122a
Show file tree
Hide file tree
Showing 2 changed files with 41 additions and 28 deletions.
65 changes: 39 additions & 26 deletions megabench/models/deepseek_vl2.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,6 @@
)
ImageFile.LOAD_TRUNCATED_IMAGES = True

logger = logging.getLogger("infoLogger")


class DeepSeekVL2(OpenAI):
def __init__(
Expand Down Expand Up @@ -55,36 +53,49 @@ def __init__(
pathlib.Path(__file__).resolve().parent / "config.json"
)

self.vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model)
self.vl_chat_processor: DeepseekVLV2Processor = (
DeepseekVLV2Processor.from_pretrained(model)
)
self.tokenizer = self.vl_chat_processor.tokenizer

vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True)
self.model = vl_gpt.to(torch.bfloat16).cuda().eval()


device_map = self.split_model(model)
if device_map:
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
model, trust_remote_code=True, device_map=device_map
)
else:
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
model, trust_remote_code=True
).cuda()
self.model = vl_gpt.to(torch.bfloat16).eval()

@staticmethod
def split_model(model_name):
device_map = {}
model_splits = {
'deepseek-ai/deepseek-vl2-small': [13, 14], # 2 GPU for 16b
'deepseek-ai/deepseek-vl2': [10, 10, 10], # 3 GPU for 27b
"deepseek-ai/deepseek-vl2-small": [7, 10, 10], # 2 GPU for 16b
"deepseek-ai/deepseek-vl2": [10, 10, 10], # 3 GPU for 27b
}
if model_name not in model_splits:
print(
f"No specific device map available for {model_name}..."
)
return None
num_layers_per_gpu = model_splits[model_name]
num_layers = sum(num_layers_per_gpu)
num_layers = sum(num_layers_per_gpu)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language.model.layers.{layer_cnt}'] = i
device_map[f"language.model.layers.{layer_cnt}"] = i
layer_cnt += 1
device_map['vision'] = 0
device_map['projector'] = 0
device_map['image_newline'] = 0
device_map['view_seperator'] = 0
device_map['language.model.embed_tokens'] = 0
device_map['language.model.norm'] = 0
device_map['language.lm_head'] = 0
device_map[f'language.model.layers.{num_layers - 1}'] = 0
device_map["vision"] = 0
device_map["projector"] = 0
device_map["image_newline"] = 0
device_map["view_seperator"] = 0
device_map["language.model.embed_tokens"] = 0
device_map["language.model.norm"] = 0
device_map["language.lm_head"] = 0
device_map[f"language.model.layers.{num_layers - 1}"] = 0
return device_map

@staticmethod
Expand Down Expand Up @@ -204,17 +215,17 @@ def prepare_query_content(self, query_info):
)

return query_content, query_images

def _create_temp_image_list(self, images):
tmp_dir = tempfile.mkdtemp()

tmp_paths = []
# First process all images
for i, img in enumerate(images):
tmp_path = os.path.join(tmp_dir, f"img_{i}.png")
img.save(tmp_path)
tmp_paths.append(tmp_path)

return tmp_paths

def query(self, task_name, query_data, position=0):
Expand Down Expand Up @@ -255,15 +266,15 @@ def query(self, task_name, query_data, position=0):
"content": query_payload,
"images": image_list,
},
{"role": "<|Assistant|>", "content": ""}
{"role": "<|Assistant|>", "content": ""},
]

pil_images = load_pil_images(conversation)
prepare_inputs = self.vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True,
system_prompt=""
system_prompt="",
).to(self.model.device)

# run image encoder to get the image embeddings
Expand All @@ -276,11 +287,13 @@ def query(self, task_name, query_data, position=0):
pad_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
max_new_tokens=8192,
max_new_tokens=4096,
do_sample=False,
use_cache=True,
)
text_outputs = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
text_outputs = self.tokenizer.decode(
outputs[0].cpu().tolist(), skip_special_tokens=True
)
except TimeoutError as e:
text_outputs = str(e)
else:
Expand Down
4 changes: 2 additions & 2 deletions megabench/models/model_type.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ class ModelType(ModelTypeContainer, Enum):
"",
ModelClass.DeepSeekVL2,
MaxImagesPerApiCallConfig(
max_num_image=16,
max_num_image=10,
total_demo_video_frames=2,
),
)
Expand All @@ -259,7 +259,7 @@ class ModelType(ModelTypeContainer, Enum):
"",
ModelClass.DeepSeekVL2,
MaxImagesPerApiCallConfig(
max_num_image=16,
max_num_image=10,
total_demo_video_frames=2,
),
)
Expand Down

0 comments on commit 0eb122a

Please sign in to comment.