Skip to content

TakuKaneda/julia-jump

Repository files navigation

julia-jump

Translate AMPL to Julia with JuMP

Note: the codes assume you use Gurobi

train-*.jl: proto-codes for implementing a policy

  • train-perfectforesight.jl: implements perfect foresight policy for a deterministic problem
  • train-cempc.jl: implements certainty-equivalent MPC
  • train-sbrmpc.jl: implements scenario-based robust MPC

parallel-*.jl: main-codes for implementing a policy in parallel

prarallel/: dir which contains the MPC functions or data loading functions

  • parallel-run-perfectforesight.jl: implements perfect foresight policy for a deterministic problem in parallel
  • parallel-run-cempc.jl: implements certainty-equivalent MPC in parallel
  • parallel-run-sbrmpc.jl: implements scenario-based robust MPC in parallel

src/: source codes

  • source.jl: functions used in the policies such as reading data files

data/: two-layer or multi-layer problem of my master thesis

  • *.json: contains the corresponding stochastic parameters
  • *.csv: contains (deterministic) problem parameters

The stochastic dual dynamic programming (SDDP)

One can implement the SDDP with running RunSDDP.jl.

  • RunSDDP.jl: runs the SDDP
  • SDDP.jl: functions used for SDDP implementation
  • LoadDataSDDP.jl: loads data for SDDP implementation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published