Skip to content

Tejasva-Maurya/Assignment-2-Fine-tuning-Text-to-Speech-TTS-Models

Repository files navigation

Assignment-2-Fine-tuning-Text-to-Speech-TTS-Models

Assignment 2: Fine-tuning Text-to-Speech (TTS) Models for English Technical Speech and Regional Languages

This repository contains two fine-tuned Text-to-Speech (TTS) models: one for English technical jargon and another for Hindi speech synthesis. Each model is designed to convert text input into high-quality audio output.

Table of Contents

Models Overview

English Technical TTS Model

Hindi TTS Model

Prerequisites

Before running the models, ensure you have the following libraries installed:

pip install transformers torch speechbrain datasets

Getting Started

Task 1: English Technical TTS Model

  1. Load the Model Use the following code to load the English TTS model:

     from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan
     
     # Load English model
     processor = AutoProcessor.from_pretrained("Tejasva-Maurya/English_Technical_finetuned")
     model = AutoModelForTextToSpectrogram.from_pretrained("Tejasva-Maurya/English_Technical_finetuned")
     vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
  2. Load the Dataset and Create Embeddings Load the englist techical dataset embeddings for processing:

     import os
     import torch
     from speechbrain.pretrained import EncoderClassifier
     from datasets import load_dataset, Audio
     
     dataset = load_dataset("csv", data_files = "/content/drive/MyDrive/Colab Notebooks/TTS/ALL_DATASET/metadata_COLAB.csv",split="train", trust_remote_code=True)
     dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
     spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
     device = "cuda" if torch.cuda.is_available() else "cpu"
     speaker_model = EncoderClassifier.from_hparams(
         source=spk_model_name,
         run_opts={"device": device},
         savedir=os.path.join("/tmp", spk_model_name),
     )
     def create_speaker_embedding(waveform):
         with torch.no_grad():
             speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
             speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
             speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
         return speaker_embeddings
     def prepare_dataset(example):
         audio = example["audio"]
         example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
         return example
     
     
     # Calculate the number of rows for a part of the dataset
     part = len(dataset) //1000
     
     # Select the part of the dataset
     dataset = dataset.select(range(part))
     
     # Prepare the dataset
     dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
     example = dataset[10]
     speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
  3. Prepare the Data or Text Preprocessing Preprocess the input data:

     import re
     def text_preprocessing(text):
          replacements = [
          ("0", "zero"),
          ("1", "one"),
          ("2", "two"),
          ("3", "three"),
          ("4", "four"),
          ("5", "five"),
          ("6", "six"),
          ("7", "seven"),
          ("8", "eight"),
          ("9", "nine"),
          ("_", " ")]
           # Convert to lowercase
          text = text.lower()
       
          # Remove punctuation (except apostrophes)
          text = re.sub(r'[^\w\s\']', '', text)
       
          # Remove extra whitespace
          text = ' '.join(text.split())
          for src, dst in replacements:
            text = text.replace(src, dst)
          return text
  4. Process Input and Generate Audio Process the input text and generate the audio:

    text ="CUDA is a parallel computing platform and programming model."
    text = text_preprocessing(text)
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
  5. Play or Save the Audio Use your preferred method to play or save the generated audio.

     from IPython.display import Audio
     Audio(speech.numpy(), rate = 16000)

Task 2: Hindi TTS Model

  1. Load the Model Use the following code to load the Hindi TTS model:

     from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan
     
     # Load English model
     processor = AutoProcessor.from_pretrained("Tejasva-Maurya/Hindi_SpeechT5_finetuned")
     model = AutoModelForTextToSpectrogram.from_pretrained("Tejasva-Maurya/Hindi_SpeechT5_finetuned")
     vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
  2. Load the Hindi Dataset and create Embeddings Load the Hindi dataset and Crate Embeddings for processing:

     import os
     import torch
     from speechbrain.pretrained import EncoderClassifier
     from datasets import load_dataset, Audio
     
     dataset = load_dataset("mozilla-foundation/common_voice_17_0", "hi", split="validated", trust_remote_code=True)
     dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
     spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
     device = "cuda" if torch.cuda.is_available() else "cpu"
     speaker_model = EncoderClassifier.from_hparams(
         source=spk_model_name,
         run_opts={"device": device},
         savedir=os.path.join("/tmp", spk_model_name),
     )
     def create_speaker_embedding(waveform):
         with torch.no_grad():
             speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
             speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
             speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
         return speaker_embeddings
     def prepare_dataset(example):
         audio = example["audio"]
         example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
         return example
     
     
     # Calculate the number of rows for a part of the dataset
     part = len(dataset) //800
     
     # Select the part of the dataset
     dataset = dataset.select(range(part))
     
     # Prepare the dataset
     dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
     example = dataset[10]
     speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
  3. Prepare the Data or Text Preprocessing Preprocess the input data:

     import re
     def text_preprocessing(text):
          replacements = [
            # Vowels and vowel matras
            ("अ", "a"),
            ("आ", "aa"),
            ("इ", "i"),
            ("ई", "ee"),
            ("उ", "u"),
            ("ऊ", "oo"),
            ("ऋ", "ri"),
            ("ए", "e"),
            ("ऐ", "ai"),
            ("ऑ", "o"),  # More accurate than 'au' for ऑ
            ("ओ", "o"),
            ("औ", "au"),
            # Consonants
            ("क", "k"),
            ("ख", "kh"),
            ("ग", "g"),
            ("घ", "gh"),
            ("ङ", "ng"),  # nasal sound
            ("च", "ch"),
            ("छ", "chh"),
            ("ज", "j"),
            ("झ", "jh"),
            ("ञ", "ny"),  # 'ny' closer to the actual sound
            ("ट", "t"),
            ("ठ", "th"),
            ("ड", "d"),
            ("ढ", "dh"),
            ("ण", "n"),  # Slight improvement for easier pronunciation
            ("त", "t"),
            ("थ", "th"),
            ("द", "d"),
            ("ध", "dh"),
            ("न", "n"),
            ("प", "p"),
            ("फ", "ph"),
            ("ब", "b"),
            ("भ", "bh"),
            ("म", "m"),
            ("य", "y"),
            ("र", "r"),
            ("ल", "l"),
            ("व", "v"),  # 'v' is closer to the Hindi 'व'
            ("श", "sh"),
            ("ष", "sh"),  # Same sound in modern pronunciation
            ("स", "s"),
            ("ह", "h"),
            # Consonant clusters and special consonants
            ("क्ष", "ksh"),
            ("त्र", "tr"),
            ("ज्ञ", "gya"),
            ("श्र", "shra"),
            # Special characters
            ("़", ""),    # Ignore nukta; can vary with regional pronunciation
            ("्", ""),    # Halant - schwa dropping (handled contextually)
            ("ऽ", ""),    # Avagraha - no direct pronunciation, often ignored
            ("ं", "n"),   # Anusvara - nasalization
            ("ः", "h"),   # Visarga - adds an 'h' sound
            ("ँ", "n"),   # Chandrabindu - nasalization
            # Vowel matras (diacritic marks)
            ("ा", "a"),
            ("ि", "i"),
            ("ी", "ee"),
            ("ु", "u"),
            ("ू", "oo"),
            ("े", "e"),
            ("ै", "ai"),
            ("ो", "o"),
            ("ौ", "au"),
            ("ृ", "ri"),  # Vowel-matra equivalent of ऋ
            # Nasalization and other marks
            ("ॅ", "e"),   # Short 'e' sound (very rare)
            ("ॉ", "o"),   # Short 'o' sound (very rare)
            # Loanwords and aspirated consonants
            ("क़", "q"),
            ("ख़", "kh"),
            ("ग़", "gh"),
            ("ज़", "z"),
            ("ड़", "r"),
            ("ढ़", "rh"),
            ("फ़", "f"),
            # Punctuation
            ("।", "."),   # Hindi sentence-ending marker -> period
        ]
     
          # Remove extra whitespace
          text = ' '.join(text.split())
          for src, dst in replacements:
            text = text.replace(src, dst)
          return text
  4. Process Input and Generate Audio Process the input text and generate the audio:

     input_text ="आज मौसम बहुत अच्छा है।"
     text = text_preprocessing(input_text)
     inputs = processor(text=text, return_tensors="pt")
     speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
  5. Play or Save the Audio Use your preferred method to play or save the generated audio.

     from IPython.display import Audio
     Audio(speech.numpy(), rate = 16000)

Usage Instructions

To run the models, please refer to the following Jupyter notebook files included in this repository:

Conclusion

This repository provides a comprehensive implementation of TTS models for both English and Hindi. Experiment with different input texts to explore the capabilities of each model! Thank you for the opportunity to work on this assignment.

About

Assignment 2: Fine-tuning Text-to-Speech (TTS) Models for English Technical Speech and Regional Languages

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published