-
Notifications
You must be signed in to change notification settings - Fork 142
分词和词典
本项目支持多种分词(tokenization)方式。最常用的,也是项目默认使用的是BertTokenizer。BertTokenizer有两种使用方式:第一种是通过 --vocab_path 指定词典路径。然后使用BERT原始的tokenization策略,根据词典对句子进行切分;第二种是通过 --spm_model_path 指定sentencepiece模型路径,然后导入sentencepiece模块,加载sentencepiece模型,对句子进行切分。如果用户指定了 --spm_model_path ,那么使用sentencepiece进行tokeniztion。否则,用户必须指定 --vocab_path ,使用BERT原始的策略进行tokenization。
此外,本项目支持CharTokenizer和SpaceTokenizer。CharTokenizer将文本按照字符分开。如果文本全都是中文,则CharTokenizer和BertTokenizer等价。CharTokenizer逻辑简单,速度大于BertTokenizer。SpaceTokenizer将文本按照空格分开。可以事先对文本进行预处理(比如进行分词),将文本按照空格分开,然后使用SpaceTokenizer。对于CharTokenizer和SpaceTokenizer,如果用户指定了 --spm_model_path ,那么使用sentencepiece模型中的词典。否则,用户必须通过 --vocab_path 指定使用的词典。
为了支持加载英文RoBERTa和GPT-2等模型,本项目支持使用BPETokenizer对句子进行切分,通过 --vocab_path 指定使用的词典,通过 --merges_path 指定使用的合并词典。
本项目还支持XLMRobertaTokenizer(和原始实现一致)。XLMRobertaTokenizer使用sentencepiece模型对句子进行切分,通过 --spm_model_path 指定sentencepiece模型路径。此外,XLMRoBERTaTokenizer会对词典进行修改,加上特殊字符。由于XLMRobertaTokenizer使用了和默认情况不一致的特殊字符,需要按照下一段中提到的方法修改特殊字符。
预处理、预训练、下游任务微调、推理阶段均需要通过 --vocab_path 或者 --smp_model_path 提供词典信息以及通过 --tokenizer 提供分词方式信息。如果用户使用自己的词典,默认情况下,填充字符、起始字符、分隔字符、遮罩字符分别为“[PAD]”、“[CLS]”、“[SEP]”、“[MASK]”(项目从默认的特殊字符映射表 models/special_tokens_map.json 中读取特殊字符)。如果用户词典中的特殊字符和默认的不一致,需要相应的提供特殊字符映射表,比如 models/xlmroberta_special_tokens_map.json ,然后修改 tencentpretrain/utils/constants.py 中的特殊字符映射表路径。
TencentPretrain支持视觉相关的Tokenizer。 ImageTokenizer是为VQGAN、VQVAE等图像离散化模型设置的。它的词典大小与模型codebook一致。ImageTokenizer在模型初始化时用于设置词典大小。图像离散化的代码在 image_tokenizer.py 中。TextImageTokenizer支持图文预训练模型,例如DALL-E、ERNIE-VILG、Talk2Face。它将图像和文本token映射到一个词典中,其中文本部分使用BertTokenizer,图像部分使用ImageTokenizer。