Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor Minimum Spanning Tree #837

Merged
merged 4 commits into from
Nov 6, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 131 additions & 110 deletions src/graph/minimum_spanning_tree.rs
Original file line number Diff line number Diff line change
@@ -1,24 +1,22 @@
use super::DisjointSetUnion;
//! This module implements Kruskal's algorithm to find the Minimum Spanning Tree (MST)
//! of an undirected, weighted graph using a Disjoint Set Union (DSU) for cycle detection.

#[derive(Debug)]
pub struct Edge {
source: i64,
destination: i64,
cost: i64,
}
use crate::graph::DisjointSetUnion;

impl PartialEq for Edge {
fn eq(&self, other: &Self) -> bool {
self.source == other.source
&& self.destination == other.destination
&& self.cost == other.cost
}
/// Represents an edge in the graph with a source, destination, and associated cost.
#[derive(Debug, PartialEq, Eq)]
pub struct Edge {
/// The starting vertex of the edge.
source: usize,
/// The ending vertex of the edge.
destination: usize,
/// The cost associated with the edge.
cost: usize,
}

impl Eq for Edge {}

impl Edge {
fn new(source: i64, destination: i64, cost: i64) -> Self {
/// Creates a new edge with the specified source, destination, and cost.
pub fn new(source: usize, destination: usize, cost: usize) -> Self {
Self {
source,
destination,
Expand All @@ -27,112 +25,135 @@ impl Edge {
}
}

pub fn kruskal(mut edges: Vec<Edge>, number_of_vertices: i64) -> (i64, Vec<Edge>) {
let mut dsu = DisjointSetUnion::new(number_of_vertices as usize);

edges.sort_unstable_by(|a, b| a.cost.cmp(&b.cost));
let mut total_cost: i64 = 0;
let mut final_edges: Vec<Edge> = Vec::new();
let mut merge_count: i64 = 0;
for edge in edges.iter() {
if merge_count >= number_of_vertices - 1 {
/// Executes Kruskal's algorithm to compute the Minimum Spanning Tree (MST) of a graph.
///
/// # Parameters
///
/// - `edges`: A vector of `Edge` instances representing all edges in the graph.
/// - `num_vertices`: The total number of vertices in the graph.
///
/// # Returns
///
/// An `Option` containing a tuple with:
///
/// - The total cost of the MST (usize).
/// - A vector of edges that are included in the MST.
///
/// Returns `None` if the graph is disconnected.
///
/// # Complexity
///
/// The time complexity is O(E log E), where E is the number of edges.
pub fn kruskal(mut edges: Vec<Edge>, num_vertices: usize) -> Option<(usize, Vec<Edge>)> {
let mut dsu = DisjointSetUnion::new(num_vertices);
let mut mst_cost: usize = 0;
let mut mst_edges: Vec<Edge> = Vec::with_capacity(num_vertices - 1);

// Sort edges by cost in ascending order
edges.sort_unstable_by_key(|edge| edge.cost);

for edge in edges {
if mst_edges.len() == num_vertices - 1 {
break;
}

let source: i64 = edge.source;
let destination: i64 = edge.destination;
if dsu.merge(source as usize, destination as usize) < usize::MAX {
merge_count += 1;
let cost: i64 = edge.cost;
total_cost += cost;
let final_edge: Edge = Edge::new(source, destination, cost);
final_edges.push(final_edge);
// Attempt to merge the sets containing the edge’s vertices
if dsu.merge(edge.source, edge.destination) != usize::MAX {
mst_cost += edge.cost;
mst_edges.push(edge);
}
}
(total_cost, final_edges)

// Return MST if it includes exactly num_vertices - 1 edges, otherwise None for disconnected graphs
(mst_edges.len() == num_vertices - 1).then_some((mst_cost, mst_edges))
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_seven_vertices_eleven_edges() {
let edges = vec![
Edge::new(0, 1, 7),
Edge::new(0, 3, 5),
Edge::new(1, 2, 8),
Edge::new(1, 3, 9),
Edge::new(1, 4, 7),
Edge::new(2, 4, 5),
Edge::new(3, 4, 15),
Edge::new(3, 5, 6),
Edge::new(4, 5, 8),
Edge::new(4, 6, 9),
Edge::new(5, 6, 11),
];

let number_of_vertices: i64 = 7;

let expected_total_cost = 39;
let expected_used_edges = vec![
Edge::new(0, 3, 5),
Edge::new(2, 4, 5),
Edge::new(3, 5, 6),
Edge::new(0, 1, 7),
Edge::new(1, 4, 7),
Edge::new(4, 6, 9),
];

let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

assert_eq!(actual_total_cost, expected_total_cost);
assert_eq!(actual_final_edges, expected_used_edges);
macro_rules! test_cases {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (edges, num_vertices, expected_result) = $test_case;
let actual_result = kruskal(edges, num_vertices);
assert_eq!(actual_result, expected_result);
}
)*
};
}

#[test]
fn test_ten_vertices_twenty_edges() {
let edges = vec![
Edge::new(0, 1, 3),
Edge::new(0, 3, 6),
Edge::new(0, 4, 9),
Edge::new(1, 2, 2),
Edge::new(1, 3, 4),
Edge::new(1, 4, 9),
Edge::new(2, 3, 2),
Edge::new(2, 5, 8),
Edge::new(2, 6, 9),
Edge::new(3, 6, 9),
Edge::new(4, 5, 8),
Edge::new(4, 9, 18),
Edge::new(5, 6, 7),
Edge::new(5, 8, 9),
Edge::new(5, 9, 10),
Edge::new(6, 7, 4),
Edge::new(6, 8, 5),
Edge::new(7, 8, 1),
Edge::new(7, 9, 4),
Edge::new(8, 9, 3),
];

let number_of_vertices: i64 = 10;

let expected_total_cost = 38;
let expected_used_edges = vec![
Edge::new(7, 8, 1),
Edge::new(1, 2, 2),
Edge::new(2, 3, 2),
Edge::new(0, 1, 3),
Edge::new(8, 9, 3),
Edge::new(6, 7, 4),
Edge::new(5, 6, 7),
Edge::new(2, 5, 8),
Edge::new(4, 5, 8),
];

let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

assert_eq!(actual_total_cost, expected_total_cost);
assert_eq!(actual_final_edges, expected_used_edges);
test_cases! {
test_seven_vertices_eleven_edges: (
vec![
Edge::new(0, 1, 7),
Edge::new(0, 3, 5),
Edge::new(1, 2, 8),
Edge::new(1, 3, 9),
Edge::new(1, 4, 7),
Edge::new(2, 4, 5),
Edge::new(3, 4, 15),
Edge::new(3, 5, 6),
Edge::new(4, 5, 8),
Edge::new(4, 6, 9),
Edge::new(5, 6, 11),
],
7,
Some((39, vec![
Edge::new(0, 3, 5),
Edge::new(2, 4, 5),
Edge::new(3, 5, 6),
Edge::new(0, 1, 7),
Edge::new(1, 4, 7),
Edge::new(4, 6, 9),
]))
),
test_ten_vertices_twenty_edges: (
vec![
Edge::new(0, 1, 3),
Edge::new(0, 3, 6),
Edge::new(0, 4, 9),
Edge::new(1, 2, 2),
Edge::new(1, 3, 4),
Edge::new(1, 4, 9),
Edge::new(2, 3, 2),
Edge::new(2, 5, 8),
Edge::new(2, 6, 9),
Edge::new(3, 6, 9),
Edge::new(4, 5, 8),
Edge::new(4, 9, 18),
Edge::new(5, 6, 7),
Edge::new(5, 8, 9),
Edge::new(5, 9, 10),
Edge::new(6, 7, 4),
Edge::new(6, 8, 5),
Edge::new(7, 8, 1),
Edge::new(7, 9, 4),
Edge::new(8, 9, 3),
],
10,
Some((38, vec![
Edge::new(7, 8, 1),
Edge::new(1, 2, 2),
Edge::new(2, 3, 2),
Edge::new(0, 1, 3),
Edge::new(8, 9, 3),
Edge::new(6, 7, 4),
Edge::new(5, 6, 7),
Edge::new(2, 5, 8),
Edge::new(4, 5, 8),
]))
),
test_disconnected_graph: (
vec![
Edge::new(0, 1, 4),
Edge::new(0, 2, 6),
Edge::new(3, 4, 2),
],
5,
None
),
}
}