|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.nn.functional as F |
| 4 | +from torch.utils.data import DataLoader |
| 5 | +from torchvision import datasets, transforms |
| 6 | + |
| 7 | +from torchensemble import FastGeometricClassifier |
| 8 | +from torchensemble.utils.logging import set_logger |
| 9 | + |
| 10 | + |
| 11 | +# The class `BasicBlock` and `ResNet` is modified from: |
| 12 | +# https://github.com/kuangliu/pytorch-cifar |
| 13 | +class BasicBlock(nn.Module): |
| 14 | + expansion = 1 |
| 15 | + |
| 16 | + def __init__(self, in_planes, planes, stride=1): |
| 17 | + super(BasicBlock, self).__init__() |
| 18 | + self.conv1 = nn.Conv2d( |
| 19 | + in_planes, |
| 20 | + planes, |
| 21 | + kernel_size=3, |
| 22 | + stride=stride, |
| 23 | + padding=1, |
| 24 | + bias=False, |
| 25 | + ) |
| 26 | + self.bn1 = nn.BatchNorm2d(planes) |
| 27 | + self.conv2 = nn.Conv2d( |
| 28 | + planes, planes, kernel_size=3, stride=1, padding=1, bias=False |
| 29 | + ) |
| 30 | + self.bn2 = nn.BatchNorm2d(planes) |
| 31 | + |
| 32 | + self.shortcut = nn.Sequential() |
| 33 | + if stride != 1 or in_planes != self.expansion * planes: |
| 34 | + self.shortcut = nn.Sequential( |
| 35 | + nn.Conv2d( |
| 36 | + in_planes, |
| 37 | + self.expansion * planes, |
| 38 | + kernel_size=1, |
| 39 | + stride=stride, |
| 40 | + bias=False, |
| 41 | + ), |
| 42 | + nn.BatchNorm2d(self.expansion * planes), |
| 43 | + ) |
| 44 | + |
| 45 | + def forward(self, x): |
| 46 | + out = F.relu(self.bn1(self.conv1(x))) |
| 47 | + out = self.bn2(self.conv2(out)) |
| 48 | + out += self.shortcut(x) |
| 49 | + out = F.relu(out) |
| 50 | + return out |
| 51 | + |
| 52 | + |
| 53 | +class ResNet(nn.Module): |
| 54 | + def __init__(self, block, num_blocks, num_classes=10): |
| 55 | + super(ResNet, self).__init__() |
| 56 | + self.in_planes = 64 |
| 57 | + |
| 58 | + self.conv1 = nn.Conv2d( |
| 59 | + 3, 64, kernel_size=3, stride=1, padding=1, bias=False |
| 60 | + ) |
| 61 | + self.bn1 = nn.BatchNorm2d(64) |
| 62 | + self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
| 63 | + self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
| 64 | + self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
| 65 | + self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
| 66 | + self.linear = nn.Linear(512 * block.expansion, num_classes) |
| 67 | + |
| 68 | + def _make_layer(self, block, planes, num_blocks, stride): |
| 69 | + strides = [stride] + [1] * (num_blocks - 1) |
| 70 | + layers = [] |
| 71 | + for stride in strides: |
| 72 | + layers.append(block(self.in_planes, planes, stride)) |
| 73 | + self.in_planes = planes * block.expansion |
| 74 | + return nn.Sequential(*layers) |
| 75 | + |
| 76 | + def forward(self, x): |
| 77 | + out = F.relu(self.bn1(self.conv1(x))) |
| 78 | + out = self.layer1(out) |
| 79 | + out = self.layer2(out) |
| 80 | + out = self.layer3(out) |
| 81 | + out = self.layer4(out) |
| 82 | + out = F.avg_pool2d(out, 4) |
| 83 | + out = out.view(out.size(0), -1) |
| 84 | + out = self.linear(out) |
| 85 | + return out |
| 86 | + |
| 87 | + |
| 88 | +if __name__ == "__main__": |
| 89 | + |
| 90 | + # Hyper-parameters |
| 91 | + n_estimators = 10 |
| 92 | + lr = 1e-1 |
| 93 | + weight_decay = 5e-4 |
| 94 | + momentum = 0.9 |
| 95 | + epochs = 200 |
| 96 | + |
| 97 | + # Utils |
| 98 | + batch_size = 128 |
| 99 | + data_dir = "../../Dataset/cifar" # MODIFY THIS IF YOU WANT |
| 100 | + torch.manual_seed(0) |
| 101 | + torch.cuda.set_device(0) |
| 102 | + |
| 103 | + # Load data |
| 104 | + train_transformer = transforms.Compose( |
| 105 | + [ |
| 106 | + transforms.RandomHorizontalFlip(), |
| 107 | + transforms.RandomCrop(32, 4), |
| 108 | + transforms.ToTensor(), |
| 109 | + transforms.Normalize( |
| 110 | + (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) |
| 111 | + ), |
| 112 | + ] |
| 113 | + ) |
| 114 | + |
| 115 | + test_transformer = transforms.Compose( |
| 116 | + [ |
| 117 | + transforms.ToTensor(), |
| 118 | + transforms.Normalize( |
| 119 | + (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) |
| 120 | + ), |
| 121 | + ] |
| 122 | + ) |
| 123 | + |
| 124 | + train_loader = DataLoader( |
| 125 | + datasets.CIFAR10( |
| 126 | + data_dir, train=True, download=True, transform=train_transformer |
| 127 | + ), |
| 128 | + batch_size=batch_size, |
| 129 | + shuffle=True, |
| 130 | + ) |
| 131 | + |
| 132 | + test_loader = DataLoader( |
| 133 | + datasets.CIFAR10(data_dir, train=False, transform=test_transformer), |
| 134 | + batch_size=batch_size, |
| 135 | + shuffle=True, |
| 136 | + ) |
| 137 | + |
| 138 | + # Set the Logger |
| 139 | + logger = set_logger("FastGeometricClassifier_cifar10_resnet") |
| 140 | + |
| 141 | + # Choose the Ensemble Method |
| 142 | + model = FastGeometricClassifier( |
| 143 | + estimator=ResNet, |
| 144 | + estimator_args={"block": BasicBlock, "num_blocks": [2, 2, 2, 2]}, |
| 145 | + n_estimators=n_estimators, |
| 146 | + cuda=True, |
| 147 | + ) |
| 148 | + |
| 149 | + # Set the Optimizer |
| 150 | + model.set_optimizer( |
| 151 | + "SGD", lr=lr, weight_decay=weight_decay, momentum=momentum |
| 152 | + ) |
| 153 | + |
| 154 | + # Set the Scheduler |
| 155 | + model.set_scheduler("CosineAnnealingLR", T_max=epochs) |
| 156 | + |
| 157 | + # Train |
| 158 | + estimator = model.fit(train_loader, epochs=epochs, test_loader=test_loader) |
| 159 | + |
| 160 | + # Ensemble |
| 161 | + model.ensemble( |
| 162 | + estimator, |
| 163 | + train_loader, |
| 164 | + cycle=4, |
| 165 | + lr_1=5e-2, |
| 166 | + lr_2=5e-4, |
| 167 | + test_loader=test_loader, |
| 168 | + ) |
| 169 | + |
| 170 | + # Evaluate |
| 171 | + acc = model.predict(test_loader) |
| 172 | + print("Testing Acc: {:.3f}".format(acc)) |
0 commit comments