-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Add Fast Geometric Ensembling (#56)
* Update CHANGELOG.rst * primal update * primal update * fix typos * primal update * improve FastGeometricClassifier * improve docstrings * add FastGeometricRegressor * flake8 formatting * flake8 formatting * add unit tests * add unit tests * add unit tests * flake8 formatting * improve documentation * improve unit tests * revert classification script * fix the workflow * add example * improve api and internal workflow * improve docstrings * fix the example
- Loading branch information
Showing
11 changed files
with
1,083 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.utils.data import DataLoader | ||
from torchvision import datasets, transforms | ||
|
||
from torchensemble import FastGeometricClassifier | ||
from torchensemble.utils.logging import set_logger | ||
|
||
|
||
# The class `BasicBlock` and `ResNet` is modified from: | ||
# https://github.com/kuangliu/pytorch-cifar | ||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, in_planes, planes, stride=1): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = nn.Conv2d( | ||
in_planes, | ||
planes, | ||
kernel_size=3, | ||
stride=stride, | ||
padding=1, | ||
bias=False, | ||
) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.conv2 = nn.Conv2d( | ||
planes, planes, kernel_size=3, stride=1, padding=1, bias=False | ||
) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride != 1 or in_planes != self.expansion * planes: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d( | ||
in_planes, | ||
self.expansion * planes, | ||
kernel_size=1, | ||
stride=stride, | ||
bias=False, | ||
), | ||
nn.BatchNorm2d(self.expansion * planes), | ||
) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.bn2(self.conv2(out)) | ||
out += self.shortcut(x) | ||
out = F.relu(out) | ||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
def __init__(self, block, num_blocks, num_classes=10): | ||
super(ResNet, self).__init__() | ||
self.in_planes = 64 | ||
|
||
self.conv1 = nn.Conv2d( | ||
3, 64, kernel_size=3, stride=1, padding=1, bias=False | ||
) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | ||
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | ||
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | ||
self.linear = nn.Linear(512 * block.expansion, num_classes) | ||
|
||
def _make_layer(self, block, planes, num_blocks, stride): | ||
strides = [stride] + [1] * (num_blocks - 1) | ||
layers = [] | ||
for stride in strides: | ||
layers.append(block(self.in_planes, planes, stride)) | ||
self.in_planes = planes * block.expansion | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = self.layer4(out) | ||
out = F.avg_pool2d(out, 4) | ||
out = out.view(out.size(0), -1) | ||
out = self.linear(out) | ||
return out | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
# Hyper-parameters | ||
n_estimators = 10 | ||
lr = 1e-1 | ||
weight_decay = 5e-4 | ||
momentum = 0.9 | ||
epochs = 200 | ||
|
||
# Utils | ||
batch_size = 128 | ||
data_dir = "../../Dataset/cifar" # MODIFY THIS IF YOU WANT | ||
torch.manual_seed(0) | ||
torch.cuda.set_device(0) | ||
|
||
# Load data | ||
train_transformer = transforms.Compose( | ||
[ | ||
transforms.RandomHorizontalFlip(), | ||
transforms.RandomCrop(32, 4), | ||
transforms.ToTensor(), | ||
transforms.Normalize( | ||
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) | ||
), | ||
] | ||
) | ||
|
||
test_transformer = transforms.Compose( | ||
[ | ||
transforms.ToTensor(), | ||
transforms.Normalize( | ||
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) | ||
), | ||
] | ||
) | ||
|
||
train_loader = DataLoader( | ||
datasets.CIFAR10( | ||
data_dir, train=True, download=True, transform=train_transformer | ||
), | ||
batch_size=batch_size, | ||
shuffle=True, | ||
) | ||
|
||
test_loader = DataLoader( | ||
datasets.CIFAR10(data_dir, train=False, transform=test_transformer), | ||
batch_size=batch_size, | ||
shuffle=True, | ||
) | ||
|
||
# Set the Logger | ||
logger = set_logger("FastGeometricClassifier_cifar10_resnet") | ||
|
||
# Choose the Ensemble Method | ||
model = FastGeometricClassifier( | ||
estimator=ResNet, | ||
estimator_args={"block": BasicBlock, "num_blocks": [2, 2, 2, 2]}, | ||
n_estimators=n_estimators, | ||
cuda=True, | ||
) | ||
|
||
# Set the Optimizer | ||
model.set_optimizer( | ||
"SGD", lr=lr, weight_decay=weight_decay, momentum=momentum | ||
) | ||
|
||
# Set the Scheduler | ||
model.set_scheduler("CosineAnnealingLR", T_max=epochs) | ||
|
||
# Train | ||
estimator = model.fit(train_loader, epochs=epochs, test_loader=test_loader) | ||
|
||
# Ensemble | ||
model.ensemble( | ||
estimator, | ||
train_loader, | ||
cycle=4, | ||
lr_1=5e-2, | ||
lr_2=5e-4, | ||
test_loader=test_loader, | ||
) | ||
|
||
# Evaluate | ||
acc = model.predict(test_loader) | ||
print("Testing Acc: {:.3f}".format(acc)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.