Skip to content

Commit

Permalink
Revert "URDF parser"
Browse files Browse the repository at this point in the history
  • Loading branch information
liquidcronos authored Mar 15, 2022
1 parent 4d5d925 commit 5828db4
Show file tree
Hide file tree
Showing 29 changed files with 18 additions and 1,593 deletions.
1 change: 0 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
src/Trip.egg-info
src/trip_kinematics.egg-info
docs/build/
build/
src/dist
Expand Down
21 changes: 0 additions & 21 deletions docs/source/from_urdf_tutorial.rst

This file was deleted.

2 changes: 1 addition & 1 deletion src/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,6 @@
author='Torben Miller, Jan Baumgärtner',
license='MIT',
description='...',
install_requires=['casadi>=3.5.5', 'numpy>=1.17.4, < 1.20.0', 'defusedxml>=0.5'],
install_requires=['casadi>=3.5.5', 'numpy>=1.17.4, < 1.20.0'],
packages=['trip_kinematics', 'trip_robots']
)
169 changes: 17 additions & 152 deletions src/trip_kinematics/Utility.py
Original file line number Diff line number Diff line change
@@ -1,149 +1,14 @@
from importlib_metadata import re
import numpy as np
from numpy import array
from casadi import cos, sin


class Rotation:
"""Represents a 3D rotation.
Can be initialized from quaternions, rotation matrices, or Euler angles, and can be represented
as quaternions. Reimplements a (small) part of the scipy.spatial.transform.Rotation API and is
meant to be used for converting between rotation representations to avoid depending on SciPy.
This class is not meant to be instantiated directly using __init__; use the methods
from_[representation] instead.
"""

def __init__(self, quat):
quat /= np.linalg.norm(quat)

self._xyzw = quat

@classmethod
def from_quat(cls, xyzw, scalar_first=True):
"""Creates a :py:class`Rotation` object from a quaternion.
Args:
xyzw (np.array): Quaternion.
scalar_first (bool, optional): Whether the quaternion is in scalar-first (w, x, y, z) or
scalar-last (x, y, z, w) format. Defaults to True.
Returns:
Rotation: Rotation object.
"""
if scalar_first:
return cls(xyzw[[1, 2, 3, 0]])
return cls(xyzw)

@classmethod
def from_euler(cls, seq, rpy, degrees=False):
"""Creates a :py:class`Rotation` object from Euler angles.
Args:
seq (str): Included for compatibility with the SciPy API. Required to be set to 'xyz'.
rpy (np.array): Euler angles.
degrees (bool, optional): True for degrees and False for radians. Defaults to False.
Returns:
Rotation: Rotation object.
"""
# pylint: disable=invalid-name

assert seq == 'xyz'
rpy = np.array(rpy)

if degrees:
rpy = rpy * (np.pi / 180)

sin_r = np.sin(0.5 * rpy[0])
cos_r = np.cos(0.5 * rpy[0])
sin_p = np.sin(0.5 * rpy[1])
cos_p = np.cos(0.5 * rpy[1])
sin_y = np.sin(0.5 * rpy[2])
cos_y = np.cos(0.5 * rpy[2])

x = sin_r * cos_p * cos_y - cos_r * sin_p * sin_y
y = cos_r * sin_p * cos_y + sin_r * cos_p * sin_y
z = cos_r * cos_p * sin_y - sin_r * sin_p * cos_y
w = cos_r * cos_p * cos_y + sin_r * sin_p * sin_y

return cls(np.array([x, y, z, w]))

@classmethod
def from_matrix(cls, matrix):
"""Creates a :py:class`Rotation` object from a rotation matrix.
Uses a very similar algorithm to scipy.spatial.transform.Rotation.from_matrix().
See https://github.com/scipy/scipy/blob/22f66bbd83867459f1491abf01b860b5ef4e026e/
scipy/spatial/transform/_rotation.pyx
Args:
matrix (np.array): Rotation matrix.
Returns:
Rotation: Rotation object.
"""
diag1 = matrix[0, 0]
diag2 = matrix[1, 1]
diag3 = matrix[2, 2]
thing = diag1 + diag2 + diag3
diag = np.array([diag1, diag2, diag3, thing])
argmax = np.argmax(diag)
quat = np.zeros(4)

if argmax != 3:
i = argmax
j = (i + 1) % 3
k = (j + 1) % 3

quat[i] = 1 - diag[3] + 2 * matrix[i, i]
quat[j] = matrix[j, i] + matrix[i, j]
quat[k] = matrix[k, i] + matrix[i, k]
quat[3] = matrix[k, j] - matrix[j, k]

else:
quat[0] = matrix[2, 1] - matrix[1, 2]
quat[1] = matrix[0, 2] - matrix[2, 0]
quat[2] = matrix[1, 0] - matrix[0, 1]
quat[3] = 1 + diag[3]

return cls(quat)

def as_quat(self, scalar_first=True):
"""Represents the object as a quaternion.
Args:
scalar_first (bool, optional): Represent the quaternion in scalar-first (w, x, y, z)
or scalar-last (x, y, z, w) format. Defaults to True.
Returns:
np.array: Quaternion.
"""
if scalar_first:
return self._xyzw[[3, 0, 1, 2]]
return self._xyzw

def __str__(self):
return f'''Rotation xyzw={self._xyzw}'''

def __repr__(self):
return f'''Rotation xyzw={self._xyzw}'''


print(1)


def identity_transformation():
"""Returns a 4x4 identity matix
Returns:
numpy.array: a 4x4 identity matrix
numy.array: a 4x4 identity matrix
"""
return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=object)
return array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=object)


def hom_translation_matrix(t_x=0, t_y=0, t_z=0):
Expand All @@ -157,7 +22,7 @@ def hom_translation_matrix(t_x=0, t_y=0, t_z=0):
Returns:
numpy.array: A 4x4 homogenous translation matrix
"""
return np.array(
return array(
[[1, 0, 0, t_x], [0, 1, 0, t_y], [0, 0, 1, t_z], [0., 0., 0., 1.]], dtype=object)


Expand All @@ -175,7 +40,7 @@ def hom_rotation(rotation_matrix):
return matrix


def quat_rotation_matrix(q_w, q_x, q_y, q_z) -> np.array:
def quat_rotation_matrix(q_w, q_x, q_y, q_z) -> array:
"""Generates a 3x3 rotation matrix from q quaternion
Args:
Expand All @@ -187,10 +52,10 @@ def quat_rotation_matrix(q_w, q_x, q_y, q_z) -> np.array:
Returns:
numpy.array: A 3x3 rotation matrix
"""
return np.array([[1-2*(q_y**2+q_z**2), 2*(q_x*q_y-q_z*q_w), 2*(q_x*q_z + q_y*q_w)],
[2*(q_x*q_y + q_z*q_w), 1-2 *
return array([[1-2*(q_y**2+q_z**2), 2*(q_x*q_y-q_z*q_w), 2*(q_x*q_z + q_y*q_w)],
[2*(q_x*q_y + q_z*q_w), 1-2 *
(q_x**2+q_z**2), 2*(q_y*q_z - q_x*q_w)],
[2*(q_x*q_z-q_y*q_w), 2*(q_y*q_z+q_x*q_w), 1-2*(q_x**2+q_y**2)]], dtype=object)
[2*(q_x*q_z-q_y*q_w), 2*(q_y*q_z+q_x*q_w), 1-2*(q_x**2+q_y**2)]], dtype=object)


def x_axis_rotation_matrix(theta):
Expand All @@ -202,9 +67,9 @@ def x_axis_rotation_matrix(theta):
Returns:
numpy.array: A 3x3 rotation matrix
"""
return np.array([[1, 0, 0],
[0, cos(theta), -sin(theta)],
[0, sin(theta), cos(theta)]], dtype=object)
return array([[1, 0, 0],
[0, cos(theta), -sin(theta)],
[0, sin(theta), cos(theta)]], dtype=object)


def y_axis_rotation_matrix(theta):
Expand All @@ -216,9 +81,9 @@ def y_axis_rotation_matrix(theta):
Returns:
numpy.array: A 3x3 rotation matrix
"""
return np.array([[cos(theta), 0, sin(theta)],
[0, 1, 0],
[-sin(theta), 0, cos(theta)]], dtype=object)
return array([[cos(theta), 0, sin(theta)],
[0, 1, 0],
[-sin(theta), 0, cos(theta)]], dtype=object)


def z_axis_rotation_matrix(theta):
Expand All @@ -230,9 +95,9 @@ def z_axis_rotation_matrix(theta):
Returns:
numpy.array: A 3x3 rotation matrix
"""
return np.array([[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]], dtype=object)
return array([[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]], dtype=object)


def get_rotation(matrix):
Expand Down
Loading

0 comments on commit 5828db4

Please sign in to comment.