A code implementation of this paper (IJACI 2022).
- Download raw datas from HotpotQA.
- Download CoreNLP from https://stanfordnlp.github.io/CoreNLP/history.html
from stanfordcorenlp import StanfordCoreNLP
nlp = StanfordCoreNLP(r'stanford-corenlp-full-2018-10-05')
- Download a python library amrlib. Follow this tutorial AMRLib to load AMR-parsing model and AMR-to-Text generation model.
stog = amrlib.load_stog_model() # AMR parsing
gtos = amrlib.load_gtos_model() # AMR-to-Text generation
- Question Decomposition (QD)
python QD_bridge.py # QD1 for bridging questions
python QD_comp.py # QD2 for comparison/intersection questions
- Follow DecompRC to answer all sub-questions and predict the final answer.
If you use this code useful, please star our repo or consider citing:
@article{deng2022interpretable,
title={Interpretable AMR-based question decomposition for multi-hop question answering},
author={Deng, Zhenyun and Zhu, Yonghua and Chen, Yang and Witbrock, Michael and Riddle, Patricia},
journal={arXiv preprint arXiv:2206.08486},
year={2022}
}