Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implemented Khop #774

Closed
wants to merge 17 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions procedures/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ add_standalone(wlpa)
add_standalone(subgraph_isomorphism)
add_standalone(sybilrank)
add_standalone(leiden)
add_stanalone(khop)

add_embed(apsp)
add_embed(bfs)
Expand Down
60 changes: 60 additions & 0 deletions procedures/algo_cpp/khop_core.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
/**
* Copyright 2024 Yingqi Zhao
*
* @Function: Compute the k-hop algorithm.
* @param:
*
*
*
*
graph:
The graph to compute on.
root_vid: Identifier of root node.
result:
Set of reachable nodes in K-hop.
value_k: Number of search layers.
* @return: Number of nodes in K_hop.
*/
// #include <cstddef>
#include "lgraph/olap_base.h"
#include "./algo.h"

using namespace lgraph_api;
using namespace lgraph_api::olap;

size_t k_hop(OlapBase<Empty>& graph, size_t root_vid, ParallelVector<size_t>& result, size_t k) {
size_t root = root_vid;
auto active_in = graph.AllocVertexSubset();
active_in.Add(root);
auto active_out = graph.AllocVertexSubset();
auto parent = graph.AllocVertexArray<size_t>();
parent.Fill(0);
parent[root] = root;
size_t num_activations = 1;
size_t discovered_vertices, j = 0;
for (size_t ii = 0; ii < k; ii++) {
active_out.Clear();
num_activations = graph.ProcessVertexActive<size_t>(
[&](size_t vi) {
size_t num_activations = 0;
for (auto& edge : graph.OutEdges(vi)) {
size_t dst = edge.neighbour;
if (parent[dst] == 0) {
auto lock = graph.GuardVertexLock(dst);
if (parent[dst] == 0) {
parent[dst] = vi;
num_activations += 1;
active_out.Add(dst);
result[j++] = dst;
}
}
}
return num_activations;
},
active_in);
printf("activates(%lu) <= %lu \n", ii+1, num_activations);
discovered_vertices += num_activations;
active_in.Swap(active_out);
}
return discovered_vertices;
}
79 changes: 79 additions & 0 deletions procedures/algo_cpp/khop_standalone.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
// Copyright 2024 Yingqi Zhao
#include "olap/olap_on_disk.h"
#include "tools/json.hpp"
#include "./algo.h"
using namespace lgraph_api;
using namespace lgraph_api::olap;
using json = nlohmann::json;

class MyConfig : public ConfigBase<Empty> {
public:
std::string root = "0";
std::string name = std::string("khop");
size_t value_k = 3;
void AddParameter(fma_common::Configuration& config) {
ConfigBase<Empty>::AddParameter(config);
config.Add(root, "root", true).Comment("Identifier of the root node.");
config.Add(value_k, "value_k", true).Comment(
"Number of search layers(value of k in K-hop algorithm).");
}
void Print() {
ConfigBase<Empty>::Print();
std::cout << " name: " << name << std::endl;
std::cout << " root: " << name << std::endl;
std::cout << " value_k: " << value_k << std::endl;
}
MyConfig(int& argc, char**& argv) : ConfigBase<Empty>(argc, argv) {
fma_common::Configuration config;
AddParameter(config);
config.ExitAfterHelp(true);
config.ParseAndFinalize(argc, argv);
Print();
}
};

extern size_t k_hop(OlapBase<Empty>& graph, size_t root_vid,
ParallelVector<size_t>& result, size_t k);

int main(int argc, char** argv) {
double start_time;
MemUsage memUsage;
memUsage.startMemRecord();
start_time = get_time();
MyConfig config(argc, argv);
OlapOnDisk<Empty> graph;
graph.Load(config, INPUT_SYMMETRIC);
size_t root_vid;
auto result = graph.AllocVertexArray<size_t>();
result.Fill(0);
if (config.id_mapping)
root_vid = graph.hash_list_.find(config.root);
else
root_vid = std::stoi(config.root);
size_t value_k = config.value_k;
memUsage.print();
memUsage.reset();
auto prepare_cost = get_time()- start_time;
printf("prepare_cost = %.2lf(s)\n", prepare_cost);

start_time = get_time();
size_t count_result = k_hop(graph, root_vid, result, value_k);
memUsage.print();
memUsage.reset();
auto core_cost = get_time()- start_time;

start_time = get_time();
if (config.output_dir != "") {
graph.Write<size_t>(config, result, graph.NumVertices(), config.name);
}
printf("\n================\n");
printf("Find %lu vertexes in %lu-hop from node NO.%lu", count_result, value_k, root_vid);
printf("\n================\n");
auto output_cost = get_time()- start_time;

printf("core_cost = %.2lf(s)\n", core_cost);
printf("output_cost = %.2lf(s)\n", output_cost);
printf("total_cost = %.2lf(s)\n", prepare_cost + core_cost + output_cost);
printf("DONE.\n");
return 0;
}
11 changes: 10 additions & 1 deletion procedures/community/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,12 @@
# community procedures

In this directory, The procedures are contribution from the commmunity.
In this directory, The procedures are contribution from the commmunity.

## K-hop Algorithm
The K-hop algorithm is used to find all nodes within K hops from a given starting node in a graph. It is particularly useful in social network analysis, recommendation systems, and network topology analysis.

### Contributor
This algorithm was contributed by AidenPearce-ZYQ, iwanttoknowwhy and ZhengHeber.

### Usage
For detailed usage, please refer to the TuGraph-DB OLAP C++ API documentation and run khop_standalone --help.
Loading