-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fc.py
190 lines (162 loc) · 10.3 KB
/
train_fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
训练新添加的全连接层,设置feature_extract = True
使用源模型的特征提取参数
"""
import warnings
import cv2
import numpy as np
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, SubsetRandomSampler, random_split, Subset
from torchvision import datasets
from utils import *
# 忽略特定类型的警告
warnings.filterwarnings("ignore", category=UserWarning)
# 是否在GPU上训练
if torch.cuda.is_available():
print('use GPU.')
else:
print('use CPU.')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main():
# 加载训练模型框架
resnet_model = initialize_model()
resnet_model = resnet_model.to(device)
# 使用双卡训练
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
resnet_model = nn.DataParallel(resnet_model)
resnet_model.to(device)
# 优化器与损失函数设置(取默认值:betas=[0.9, 0.999], eps=1e-8)
optimizer = torch.optim.Adam(resnet_model.parameters(), lr=args.lr)
# 学习率衰减:每step_size个epoch之后,学习率衰减为原来的gamma倍
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
# 由于最后一层已经使用了LogSoftmax(),故交叉熵就等价于这样计算
criterion = nn.NLLLoss()
# 标准的预处理输入图像
data_transform = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and jitter image brightness
data_jitter_brightness = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.ColorJitter(brightness=5),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and jitter image saturation
data_jitter_saturation = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.ColorJitter(saturation=5),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and jitter image contrast
data_jitter_contrast = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.ColorJitter(contrast=5),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and jitter image hues
data_jitter_hue = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.ColorJitter(hue=0.4),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and rotate image
data_rotate = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.RandomRotation(15),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and flip image horizontally and vertically
data_hvflip = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.RandomHorizontalFlip(1),
transforms.RandomVerticalFlip(1),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and shear image
data_shear = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.RandomAffine(degrees=15, shear=2),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# Resize, normalize and translate image
data_translate = transforms.Compose([transforms.ToTensor(),
transforms.Resize(args.resize_size),
transforms.CenterCrop(args.input_size),
transforms.RandomAffine(degrees=15, translate=(0.1, 0.1)),
# 这里是自行计算的GTSRB训练集的均值和方差
transforms.Normalize(mean=[0.3402, 0.3121, 0.3214],
std=[0.1681, 0.1683, 0.1785])
])
# 训练数据集与验证数据集
dataset = torch.utils.data.ConcatDataset([datasets.ImageFolder(args.train_path,
transform=data_transform),
datasets.ImageFolder(args.train_path,
transform=data_jitter_brightness),
datasets.ImageFolder(args.train_path,
transform=data_jitter_hue),
datasets.ImageFolder(args.train_path,
transform=data_jitter_contrast),
datasets.ImageFolder(args.train_path,
transform=data_jitter_saturation),
datasets.ImageFolder(args.train_path,
transform=data_translate),
datasets.ImageFolder(args.train_path,
transform=data_rotate),
datasets.ImageFolder(args.train_path,
transform=data_hvflip),
datasets.ImageFolder(args.train_path,
transform=data_shear)])
# 制定数据集比例
train_ratio = 0.8
valid_ratio = 1 - train_ratio
# 计算划分的索引边界
num_samples = len(dataset)
indices = list(range(num_samples))
split_train = int(np.floor(train_ratio * num_samples))
split_valid = int(np.floor(valid_ratio * num_samples))
# 随机打乱索引顺序
np.random.shuffle(indices)
# 划分训练集和验证集的索引
train_indices, valid_indices = indices[:split_train], indices[split_train:split_train + split_valid]
# 创建两个SubsetRandomSampler对象,分别用于训练集和验证集
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)
print(f"train_dataset_len = {len(train_indices)}, valid_dataset_len = {len(valid_indices)}")
# 使用 DataLoader 加载训练集和验证集
train_loader = DataLoader(dataset, sampler=train_sampler, batch_size=args.batch_size)
valid_loader = DataLoader(dataset, sampler=valid_sampler, batch_size=args.batch_size)
# 开始训练,参数设置
train(net=resnet_model,
train_data=train_loader,
valid_data=valid_loader,
optimizer=optimizer,
scheduler=scheduler,
criterion=criterion)
if __name__ == '__main__':
main()