Skip to content

UofT-DSI/sampling

Repository files navigation

Sampling

Content

Description

This module introduces the essentials of sampling, probability, and survey methodology. This includes simple probability samples, stratified sampling, cluster sampling, dealing with non-response, estimating, and survey quality. Participants will consider the theoretical foundations of different sampling approaches, as well as practical applications of this knowledge towards contexts such as market research, political polling, and the Canadian census. Participants will engage in analysis using the Python programming language.

Learning Outcomes

By the end of the module, participants will be able to: * Implement simple probability samples. * Evaluate complicated sampling procedures and the tradeoffs involved. * Identify and understand sources of error or inaccuracies in data as a result of sampling strategies. * Assess survey quality.

Assignments

Assignment Due Date
Sampling and Reproducibility in Python Friday, November 8
Questionnaire Design (Part A) Saturday, November 9
Questionnaire Design (Part B) Friday, November 15
Data Documentation Comparison Worksheet Saturday, November 16

Contacts

Questions can be submitted to the #cohort-3-help channel on Slack

Delivery of the Learning Module

This module will include live learning sessions and optional, asynchronous work periods. During live learning sessions, the Technical Facilitator will introduce and explain key concepts and demonstrate core skills. Learning is facilitated during this time. Before and after each live learning session, the instructional team will be available for questions related to the core concepts of the module. Optional work periods are to be used to seek help from peers, the Learning Support team, and to work through the homework and assignments in the learning module, with access to live help. Content is not facilitated, but rather this time should be driven by participants. We encourage participants to come to these work periods with questions and problems to work through.   Participants are encouraged to engage actively during the learning module. They key to developing the core skills in each learning module is through practice. The more participants engage in coding along with the instructional team, and applying the skills in each module, the more likely it is that these skills will solidify.  

Schedule

Schedule

Live Learning Session Topic Assignments Resources
1 Introduction, Probability Slides 1
Slides 2
2 Populations, censuses, surveys, and observational data; Essentials of sampling, asking and observing Sampling and Reproducibility in Python Slides 1
3 Simple probability samples, Stratified sampling, Systematic Sampling Questionnaire Design (Part A) Slides 1
Slides 2
4 Cluster Sampling, Errors Slides 1
Slides 2
5 Survey Quality, Questionnaire Design, Ethics Questionnaire Design (Part B) Slides 1
Slides 2
6 Privacy Data Documentation Comparison Worksheet Slides 1

Requirements

  • Participants are expected to have completed Shell, Git, and Python learning modules.
  • Participants are encouraged to ask questions, and collaborate with others to enhance their learning experience.
  • Participants must have a computer and an internet connection to participate in online activities.
  • Participants must not use generative AI such as ChatGPT to generate code in order to complete assignments. It should be used as a supportive tool to seek out answers to questions you may have.
  • Participants must have VSCode installed with the following extensions:
  • We expect Participants to have completed the steps in the onboarding repo.
  • We encourage participants to default to having their camera on at all times, and turning the camera off only as needed. This will greatly enhance the learning experience for all participants and provides real-time feedback for the instructional team.

Resources

Feel free to use the following as resources:

Documents

Videos

How to get help

image


Folder Structure

.
├── .github
├── 01_materials
├── 02_activities
├── 03_instructional_team
├── 04_cohort_three
├── .gitignore
├── LICENSE
├── README.md
└── steps_to_ask_for_help.png
  • .github: Contains issue templates and pull request templates for the repository.
  • materials: Module slides and interactive notebooks (.ipynb files) used during learning sessions.
  • activities: Contains graded assignments, exercises, and homework to practice concepts covered in the learning module.
  • instructional_team: Resources for the instructional team.
  • cohort_three: Additional materials and resources for cohort three.
  • .gitignore: Files to exclude from this folder, specified by the Technical Facilitator
  • LICENSE: The license for this repository.
  • README.md: This file.
  • steps_to_ask_for_help.png: Guide on how to ask for help.