-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added the AI Anime Avatar Generator model with documentation, includi…
…ng README.md, requirements.txt, and LICENSE.md files.
- Loading branch information
Showing
9 changed files
with
588 additions
and
0 deletions.
There are no files selected for viewing
315 changes: 315 additions & 0 deletions
315
Generative Models/AI Anime Avatar Generator/AnimeGANv2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
from tools.ops import * | ||
from tools.utils import * | ||
from glob import glob | ||
import time | ||
import numpy as np | ||
from net import generator | ||
from net.discriminator import D_net | ||
from tools.data_loader import ImageGenerator | ||
from tools.vgg19 import Vgg19 | ||
|
||
class AnimeGANv2(object) : | ||
def __init__(self, sess, args): | ||
self.model_name = 'AnimeGANv2' | ||
self.sess = sess | ||
self.checkpoint_dir = args.checkpoint_dir | ||
self.log_dir = args.log_dir | ||
self.dataset_name = args.dataset | ||
|
||
self.epoch = args.epoch | ||
self.init_epoch = args.init_epoch # args.epoch // 20 | ||
|
||
self.gan_type = args.gan_type | ||
self.batch_size = args.batch_size | ||
self.save_freq = args.save_freq | ||
|
||
self.init_lr = args.init_lr | ||
self.d_lr = args.d_lr | ||
self.g_lr = args.g_lr | ||
|
||
""" Weight """ | ||
self.g_adv_weight = args.g_adv_weight | ||
self.d_adv_weight = args.d_adv_weight | ||
self.con_weight = args.con_weight | ||
self.sty_weight = args.sty_weight | ||
self.color_weight = args.color_weight | ||
self.tv_weight = args.tv_weight | ||
|
||
self.training_rate = args.training_rate | ||
self.ld = args.ld | ||
|
||
self.img_size = args.img_size | ||
self.img_ch = args.img_ch | ||
|
||
""" Discriminator """ | ||
self.n_dis = args.n_dis | ||
self.ch = args.ch | ||
self.sn = args.sn | ||
|
||
self.sample_dir = os.path.join(args.sample_dir, self.model_dir) | ||
check_folder(self.sample_dir) | ||
|
||
self.real = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='real_A') | ||
self.anime = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_A') | ||
self.anime_smooth = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_smooth_A') | ||
self.test_real = tf.placeholder(tf.float32, [1, None, None, self.img_ch], name='test_input') | ||
|
||
self.anime_gray = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch],name='anime_B') | ||
|
||
|
||
self.real_image_generator = ImageGenerator('./dataset/train_photo', self.img_size, self.batch_size) | ||
self.anime_image_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/style'), self.img_size, self.batch_size) | ||
self.anime_smooth_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/smooth'), self.img_size, self.batch_size) | ||
self.dataset_num = max(self.real_image_generator.num_images, self.anime_image_generator.num_images) | ||
|
||
self.vgg = Vgg19() | ||
|
||
print() | ||
print("##### Information #####") | ||
print("# gan type : ", self.gan_type) | ||
print("# dataset : ", self.dataset_name) | ||
print("# max dataset number : ", self.dataset_num) | ||
print("# batch_size : ", self.batch_size) | ||
print("# epoch : ", self.epoch) | ||
print("# init_epoch : ", self.init_epoch) | ||
print("# training image size [H, W] : ", self.img_size) | ||
print("# g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight,tv_weight : ", self.g_adv_weight,self.d_adv_weight,self.con_weight,self.sty_weight,self.color_weight,self.tv_weight) | ||
print("# init_lr,g_lr,d_lr : ", self.init_lr,self.g_lr,self.d_lr) | ||
print(f"# training_rate G -- D: {self.training_rate} : 1" ) | ||
print() | ||
|
||
################################################################################## | ||
# Generator | ||
################################################################################## | ||
|
||
def generator(self, x_init, reuse=False, scope="generator"): | ||
with tf.variable_scope(scope, reuse=reuse): | ||
G = generator.G_net(x_init) | ||
return G.fake | ||
|
||
################################################################################## | ||
# Discriminator | ||
################################################################################## | ||
|
||
def discriminator(self, x_init, reuse=False, scope="discriminator"): | ||
D = D_net(x_init, self.ch, self.n_dis, self.sn, reuse=reuse, scope=scope) | ||
return D | ||
|
||
################################################################################## | ||
# Model | ||
################################################################################## | ||
def gradient_panalty(self, real, fake, scope="discriminator"): | ||
if self.gan_type.__contains__('dragan') : | ||
eps = tf.random_uniform(shape=tf.shape(real), minval=0., maxval=1.) | ||
_, x_var = tf.nn.moments(real, axes=[0, 1, 2, 3]) | ||
x_std = tf.sqrt(x_var) # magnitude of noise decides the size of local region | ||
|
||
fake = real + 0.5 * x_std * eps | ||
|
||
alpha = tf.random_uniform(shape=[self.batch_size, 1, 1, 1], minval=0., maxval=1.) | ||
interpolated = real + alpha * (fake - real) | ||
|
||
logit, _= self.discriminator(interpolated, reuse=True, scope=scope) | ||
|
||
grad = tf.gradients(logit, interpolated)[0] # gradient of D(interpolated) | ||
grad_norm = tf.norm(flatten(grad), axis=1) # l2 norm | ||
|
||
GP = 0 | ||
# WGAN - LP | ||
if self.gan_type.__contains__('lp'): | ||
GP = self.ld * tf.reduce_mean(tf.square(tf.maximum(0.0, grad_norm - 1.))) | ||
|
||
elif self.gan_type.__contains__('gp') or self.gan_type == 'dragan' : | ||
GP = self.ld * tf.reduce_mean(tf.square(grad_norm - 1.)) | ||
|
||
return GP | ||
|
||
def build_model(self): | ||
|
||
""" Define Generator, Discriminator """ | ||
self.generated = self.generator(self.real) | ||
self.test_generated = self.generator(self.test_real, reuse=True) | ||
|
||
|
||
anime_logit = self.discriminator(self.anime) | ||
anime_gray_logit = self.discriminator(self.anime_gray, reuse=True) | ||
|
||
generated_logit = self.discriminator(self.generated, reuse=True) | ||
smooth_logit = self.discriminator(self.anime_smooth, reuse=True) | ||
|
||
""" Define Loss """ | ||
if self.gan_type.__contains__('gp') or self.gan_type.__contains__('lp') or self.gan_type.__contains__('dragan') : | ||
GP = self.gradient_panalty(real=self.anime, fake=self.generated) | ||
else : | ||
GP = 0.0 | ||
|
||
# init pharse | ||
init_c_loss = con_loss(self.vgg, self.real, self.generated) | ||
init_loss = self.con_weight * init_c_loss | ||
|
||
self.init_loss = init_loss | ||
|
||
# gan | ||
c_loss, s_loss = con_sty_loss(self.vgg, self.real, self.anime_gray, self.generated) | ||
tv_loss = self.tv_weight * total_variation_loss(self.generated) | ||
t_loss = self.con_weight * c_loss + self.sty_weight * s_loss + color_loss(self.real,self.generated) * self.color_weight + tv_loss | ||
|
||
g_loss = self.g_adv_weight * generator_loss(self.gan_type, generated_logit) | ||
d_loss = self.d_adv_weight * discriminator_loss(self.gan_type, anime_logit, anime_gray_logit, generated_logit, smooth_logit) + GP | ||
|
||
self.Generator_loss = t_loss + g_loss | ||
self.Discriminator_loss = d_loss | ||
|
||
""" Training """ | ||
t_vars = tf.trainable_variables() | ||
G_vars = [var for var in t_vars if 'generator' in var.name] | ||
D_vars = [var for var in t_vars if 'discriminator' in var.name] | ||
|
||
self.init_optim = tf.train.AdamOptimizer(self.init_lr, beta1=0.5, beta2=0.999).minimize(self.init_loss, var_list=G_vars) | ||
self.G_optim = tf.train.AdamOptimizer(self.g_lr , beta1=0.5, beta2=0.999).minimize(self.Generator_loss, var_list=G_vars) | ||
self.D_optim = tf.train.AdamOptimizer(self.d_lr , beta1=0.5, beta2=0.999).minimize(self.Discriminator_loss, var_list=D_vars) | ||
|
||
"""" Summary """ | ||
self.G_loss = tf.summary.scalar("Generator_loss", self.Generator_loss) | ||
self.D_loss = tf.summary.scalar("Discriminator_loss", self.Discriminator_loss) | ||
|
||
self.G_gan = tf.summary.scalar("G_gan", g_loss) | ||
self.G_vgg = tf.summary.scalar("G_vgg", t_loss) | ||
self.G_init_loss = tf.summary.scalar("G_init", init_loss) | ||
|
||
self.V_loss_merge = tf.summary.merge([self.G_init_loss]) | ||
self.G_loss_merge = tf.summary.merge([self.G_loss, self.G_gan, self.G_vgg, self.G_init_loss]) | ||
self.D_loss_merge = tf.summary.merge([self.D_loss]) | ||
|
||
def train(self): | ||
# initialize all variables | ||
self.sess.run(tf.global_variables_initializer()) | ||
|
||
# saver to save model | ||
self.saver = tf.train.Saver(max_to_keep=self.epoch) | ||
|
||
# summary writer | ||
self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_dir, self.sess.graph) | ||
|
||
""" Input Image""" | ||
real_img_op, anime_img_op, anime_smooth_op = self.real_image_generator.load_images(), self.anime_image_generator.load_images(), self.anime_smooth_generator.load_images() | ||
|
||
|
||
# restore check-point if it exits | ||
could_load, checkpoint_counter = self.load(self.checkpoint_dir) | ||
if could_load: | ||
start_epoch = checkpoint_counter + 1 | ||
|
||
print(" [*] Load SUCCESS") | ||
else: | ||
start_epoch = 0 | ||
|
||
print(" [!] Load failed...") | ||
|
||
# loop for epoch | ||
init_mean_loss = [] | ||
mean_loss = [] | ||
# training times , G : D = self.training_rate : 1 | ||
j = self.training_rate | ||
for epoch in range(start_epoch, self.epoch): | ||
for idx in range(int(self.dataset_num / self.batch_size)): | ||
anime, anime_smooth, real = self.sess.run([anime_img_op, anime_smooth_op, real_img_op]) | ||
train_feed_dict = { | ||
self.real:real[0], | ||
self.anime:anime[0], | ||
self.anime_gray:anime[1], | ||
self.anime_smooth:anime_smooth[1] | ||
} | ||
|
||
if epoch < self.init_epoch : | ||
# Init G | ||
start_time = time.time() | ||
|
||
real_images, generator_images, _, v_loss, summary_str = self.sess.run([self.real, self.generated, | ||
self.init_optim, | ||
self.init_loss, self.V_loss_merge], feed_dict = train_feed_dict) | ||
self.writer.add_summary(summary_str, epoch) | ||
init_mean_loss.append(v_loss) | ||
|
||
print("Epoch: %3d Step: %5d / %5d time: %f s init_v_loss: %.8f mean_v_loss: %.8f" % (epoch, idx,int(self.dataset_num / self.batch_size), time.time() - start_time, v_loss, np.mean(init_mean_loss))) | ||
if (idx+1)%200 ==0: | ||
init_mean_loss.clear() | ||
else : | ||
start_time = time.time() | ||
|
||
if j == self.training_rate: | ||
# Update D | ||
_, d_loss, summary_str = self.sess.run([self.D_optim, self.Discriminator_loss, self.D_loss_merge], | ||
feed_dict=train_feed_dict) | ||
self.writer.add_summary(summary_str, epoch) | ||
|
||
# Update G | ||
real_images, generator_images, _, g_loss, summary_str = self.sess.run([self.real, self.generated,self.G_optim, | ||
self.Generator_loss, self.G_loss_merge], feed_dict = train_feed_dict) | ||
self.writer.add_summary(summary_str, epoch) | ||
|
||
mean_loss.append([d_loss, g_loss]) | ||
if j == self.training_rate: | ||
|
||
print( | ||
"Epoch: %3d Step: %5d / %5d time: %f s d_loss: %.8f, g_loss: %.8f -- mean_d_loss: %.8f, mean_g_loss: %.8f" % ( | ||
epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, d_loss, g_loss, np.mean(mean_loss, axis=0)[0], | ||
np.mean(mean_loss, axis=0)[1])) | ||
else: | ||
print( | ||
"Epoch: %3d Step: %5d / %5d time: %f s , g_loss: %.8f -- mean_g_loss: %.8f" % ( | ||
epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, g_loss, np.mean(mean_loss, axis=0)[1])) | ||
|
||
if (idx + 1) % 200 == 0: | ||
mean_loss.clear() | ||
|
||
j = j - 1 | ||
if j < 1: | ||
j = self.training_rate | ||
|
||
|
||
if (epoch + 1) >= self.init_epoch and np.mod(epoch + 1, self.save_freq) == 0: | ||
self.save(self.checkpoint_dir, epoch) | ||
|
||
if epoch >= self.init_epoch -1: | ||
""" Result Image """ | ||
val_files = glob('./dataset/{}/*.*'.format('val')) | ||
save_path = './{}/{:03d}/'.format(self.sample_dir, epoch) | ||
check_folder(save_path) | ||
for i, sample_file in enumerate(val_files): | ||
print('val: '+ str(i) + sample_file) | ||
sample_image = np.asarray(load_test_data(sample_file, self.img_size)) | ||
test_real,test_generated = self.sess.run([self.test_real,self.test_generated],feed_dict = {self.test_real:sample_image} ) | ||
save_images(test_real, save_path+'{:03d}_a.jpg'.format(i), None) | ||
save_images(test_generated, save_path+'{:03d}_b.jpg'.format(i), None) | ||
|
||
@property | ||
def model_dir(self): | ||
return "{}_{}_{}_{}_{}_{}_{}_{}_{}".format(self.model_name, self.dataset_name, | ||
self.gan_type, | ||
int(self.g_adv_weight), int(self.d_adv_weight), | ||
int(self.con_weight), int(self.sty_weight), | ||
int(self.color_weight), int(self.tv_weight)) | ||
|
||
|
||
def save(self, checkpoint_dir, step): | ||
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) | ||
if not os.path.exists(checkpoint_dir): | ||
os.makedirs(checkpoint_dir) | ||
self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step) | ||
|
||
def load(self, checkpoint_dir): | ||
print(" [*] Reading checkpoints...") | ||
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) | ||
|
||
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information | ||
|
||
if ckpt and ckpt.model_checkpoint_path: | ||
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line | ||
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name)) | ||
counter = int(ckpt_name.split('-')[-1]) | ||
print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) | ||
return True, counter | ||
else: | ||
print(" [*] Failed to find a checkpoint") | ||
return False, 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2024 RAMESWAR BISOYI | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Oops, something went wrong.