Skip to content

Benchmarking Pixel based AI Upscaling Models for Video Upscaling

License

Notifications You must be signed in to change notification settings

VikramxD/pixelupbench

Repository files navigation

PixelUpBench: Video Upscaling Models Benchmark

A comprehensive benchmark suite for evaluating various video upscaling models, focusing on both performance and quality metrics.

Overview

PixelUpBench provides detailed benchmarking results for state-of-the-art video upscaling models, comparing their performance across different video types and resolutions. This benchmark helps developers and researchers choose the most suitable upscaling model for their specific use case.

Test Environment

Hardware Specifications:
- GPU: NVIDIA A40 (48GB VRAM)
- CUDA Version: 11.8
- Python Version: 3.10

Test Configuration:
- Scale Factors: 4x (primary), 2x (selected models)
- Video Types: Realistic and Anime content
- Resolution Range: 360p to 1080p input

Test Dataset

Video Specifications

Video Duration (s) FPS Resolution Content Type
generated.mp4 4 25.0 704x480 Synthetic
input.mp4 12 23.98 1280x720 Real-world
low_rel.mp4 10 25.0 640x360 Real-world
low_res.mp4 8 25.0 360x640 Real-world
restore.mp4 14 18.0 480x360 Real-world
test_real.mp4 10 30.0 1280x720 Real-world
test_anime.mp4 10 30.0 1280x720 Anime

Benchmark Results

4x Upscaling Models

Model Avg Time(s)↓ Avg SSIM↑ Avg model_fps↓ VRAM Usage (GB) Best Use Case
4xLSDIRCompactR3 277.17 0.867 0.715 8.2 Fast processing, general content
4xNomosRealPLKSR 405.10 0.837 0.486 10.4 Balanced quality-speed
RealESRGAN_x4plus 464.26 - 0.447 6.8 General purpose
4xNomos2_otf_esrgan 704.06 0.869 0.292 12.6 High quality, no time constraint
AURA-SR 791.87 0.910 0.25 14.2 Maximum quality
4xHFA2kLUDVAESwinIR_light 911.84 0.841 0.2155 9.8 Memory-constrained systems
4xNomos2_hq_atd 2332.86 0.907 0.09 16.4 Highest quality, offline processing

2x Upscaling Models

Model Avg Time(s)↓ Avg SSIM↑ Avg model_fps↓ VRAM Usage (GB) Best Use Case
2xHFA2kCompact 77.20 0.903 2.8154 4.2 Fast processing
2xNomosUni_span_multijpg 81.41 0.947 2.6364 4.8 General purpose
2xHFA2k_LUDVAE_compact 80.06 0.901 2.6856 4.4 Memory-efficient
2xNomosUni_esrgan_multijpg 109.87 0.941 1.9656 5.2 High quality
2xRRDB APISR 333.032 0.697 2.77 6.4 Fast inference

Model Analysis

Performance Categories

  1. Ultra-Fast Processing (>2 FPS)

    • 2x Models: 2xHFA2kCompact, 2xNomosUni_span_multijpg
    • Best for: Real-time processing, streaming applications
  2. Balanced Performance (0.4-2 FPS)

    • Models: 4xLSDIRCompactR3, 4xNomosRealPLKSR, RealESRGAN_x4plus
    • Best for: General purpose upscaling with good quality-speed trade-off
  3. Quality Focused (<0.4 FPS)

    • Models: AURA-SR, 4xNomos2_hq_atd
    • Best for: Professional video enhancement, offline processing

Quality Metrics

  1. SSIM Performance

    • Highest: 0.977 (4xNomos2_hq_atd on restore.mp4)
    • Most Consistent: 4xHFA2kLUDVAESwinIR_light (0.766-0.889 range)
    • Best Overall: AURA-SR (0.910 average)
  2. Visual Quality Characteristics

    • Detail Preservation: 4xNomos2_hq_atd, AURA-SR
    • Artifact Handling: 4xNomosRealPLKSR, RealESRGAN_x4plus
    • Edge Sharpness: 4xNomos2_otf_esrgan

Optimization Guidelines

Resource Requirements

  1. VRAM Considerations

    • Light Models (<8GB): RealESRGAN_x4plus, 2x models
    • Medium Models (8-12GB): 4xLSDIRCompactR3, 4xNomosRealPLKSR
    • Heavy Models (>12GB): AURA-SR, 4xNomos2_hq_atd
  2. Processing Time Factors

    • Resolution scaling is non-linear
    • Portrait videos require more processing time
    • Batch processing can improve throughput

Best Practices

  1. Model Selection

    • For real-time: Use 2x models or 4xLSDIRCompactR3
    • For quality: AURA-SR or 4xNomos2_hq_atd
    • For balanced: 4xNomosRealPLKSR or RealESRGAN_x4plus
  2. Optimization Techniques

    • Use appropriate batch sizes for your VRAM
    • Consider resolution preprocessing
    • Implement proper memory management

Notes

  • ↑ Higher is better
  • ↓ Lower is better
  • SSIM: Structural Similarity Index (0-1)
  • model_fps: Frames processed per second
  • All tests conducted on identical hardware
  • VRAM usage may vary with input resolution

Releases

No releases published

Languages