Repository of AF-Guide Guiding Online Reinforcement Learning with Action-Free Offline Pretraining.
conda env create -f environment.yml
conda activate afguide
Training Guided-SAC using pretrained AFDT.
# specify different environments by changing the config files
python scripts/train_guided_sac.py --config configs/guided_sac/hopper_medium.yaml --device="cuda" --ckpt_root /path/to/save/model/ --name_postfix test --seed 0
Training SAC with additional guiding rewards from pretrained AFDT.
# specify different environments by changing the config files
python scripts/train_guided_sac.py --ablation_sac_reward_sum --config configs/guided_sac/hopper_medium.yaml --device="cuda" --ckpt_root /path/to/save/model/ --name_postfix test --seed 0
Training pure SAC without guidance from action-free offline dataset.
# specify different environments by changing the config files
python scripts/train_guided_sac.py --config configs/sac/hopper_medium.yaml --device="cuda" --ckpt_root /path/to/save/model/ --name_postfix test --seed 0
Download dataset first
python scripts/download_datasets_afdt.py
Train AFDT
python scripts/train_afdt.py --env antmaze-umaze-v0 # change to the dataset you want
@article{zhu2023guiding,
title={Guiding Online Reinforcement Learning with Action-Free Offline Pretraining},
author={Zhu, Deyao and Wang, Yuhui and Schmidhuber, J{\"u}rgen and Elhoseiny, Mohamed},
journal={arXiv preprint arXiv:2301.12876},
year={2023}
}