This project implements a simple neural network for classifying handwritten digits from the MNIST dataset. The neural network is built from scratch using only NumPy, demonstrating fundamental concepts of neural networks including forward propagation, backward propagation, and gradient descent.
- Forward Propagation: Implemented for a two-layer neural network.
- Backward Propagation: Includes the calculation of gradients for weights and biases.
- Gradient Descent: Updates weights and biases to minimize the loss function.
- MNIST Data Handling: Loading and preprocessing of the MNIST dataset. -Visualization: Displays sample predictions with the corresponding handwritten digit images.
- Python 3.x
- NumPy
- pandas
- Matplotlib
Clone the repository:
git clone https://github.com/yourusername/Simple-Neural-Network.git
cd mnist-numpy-neural-network
Install dependencies:
pip install numpy matplotlib
pip install pandas
pip install numpy
Download the MNIST dataset:
You can download the MNIST dataset from https://www.kaggle.com/datasets/hojjatk/mnist-dataset or use the provided script.
Initialize Parameters:
def init_params():
W1 = np.random.rand(10, 784) - 0.5
b1 = np.random.rand(10, 1) - 0.5
W2 = np.random.rand(10, 10) - 0.5
b2 = np.random.rand(10, 1) - 0.5
return W1, b1, W2, b2
Forward Propagation:
def forward_prop(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
Backward Propagation:
def backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y):
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
return dW1, db1, dW2, db2
Update Parameters:
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
Gradient Descent:
def gradient_descent(X, Y, alpha, iterations):
W1, b1, W2, b2 = init_params()
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 10 == 0:
print("Iteration: ", i)
predictions = get_predictions(A2)
print(get_accuracy(predictions, Y))
return W1, b1, W2, b2
Make Predictions:
def make_predictions(X, W1, b1, W2, b2):
_, _, _, A2 = forward_prop(W1, b1, W2, b2, X)
predictions = get_predictions(A2)
return predictions
Test Prediction::
def test_prediction(index, W1, b1, W2, b2):
current_image = X_train[:, index, None]
prediction = make_predictions(X_train[:, index, None], W1, b1, W2, b2)
label = Y_train[index]
print("Prediction: ", prediction)
print("Label: ", label)
This project is licensed under the MIT License. See the LICENSE file for details.