forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
91 lines (75 loc) · 2.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gym
import numpy as np
from cartpole_agent import CartpoleAgent
from cartpole_model import CartpoleModel
from parl.algorithms import PolicyGradient
from parl.utils import logger
from utils import calc_discount_norm_reward
OBS_DIM = 4
ACT_DIM = 2
GAMMA = 0.99
LEARNING_RATE = 1e-3
SEED = 1
def run_train_episode(env, agent):
obs_list, action_list, reward_list = [], [], []
obs = env.reset()
while True:
obs_list.append(obs)
action = agent.sample(obs)
action_list.append(action)
obs, reward, done, info = env.step(action)
reward_list.append(reward)
if done:
break
return obs_list, action_list, reward_list
def run_evaluate_episode(env, agent):
obs = env.reset()
all_reward = 0
while True:
if args.eval_vis:
env.render()
action = agent.predict(obs)
obs, reward, done, info = env.step(action)
all_reward += reward
if done:
break
return all_reward
def main():
env = gym.make("CartPole-v0")
env.seed(SEED)
np.random.seed(SEED)
model = CartpoleModel(act_dim=ACT_DIM)
alg = PolicyGradient(model, hyperparas={'lr': LEARNING_RATE})
agent = CartpoleAgent(alg, obs_dim=OBS_DIM, act_dim=ACT_DIM, seed=SEED)
for i in range(1000):
obs_list, action_list, reward_list = run_train_episode(env, agent)
logger.info("Episode {}, Reward Sum {}.".format(i, sum(reward_list)))
batch_obs = np.array(obs_list)
batch_action = np.array(action_list)
batch_reward = calc_discount_norm_reward(reward_list, GAMMA)
agent.learn(batch_obs, batch_action, batch_reward)
if (i + 1) % 100 == 0:
all_reward = run_evaluate_episode(env, agent)
logger.info('Test reward: {}'.format(all_reward))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--eval_vis',
action='store_true',
help='if set, will visualize the game when evaluating')
args = parser.parse_args()
main()