-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #79 from juhayna-zh/main
Add MusicFM Support & Fix Bug in mc_musiccaps
- Loading branch information
Showing
10 changed files
with
2,584 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# MIT License | ||
# | ||
# Copyright 2023 ByteDance Inc. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), | ||
# to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | ||
# IN THE SOFTWARE. | ||
|
||
import json | ||
import random | ||
import torch | ||
from torch import nn | ||
from einops import rearrange | ||
|
||
from ..modules.random_quantizer import RandomProjectionQuantizer | ||
from ..modules.features import MelSTFT | ||
from ..modules.conv import Conv2dSubsampling | ||
|
||
|
||
class MusicFM25Hz(nn.Module): | ||
""" | ||
MusicFM | ||
Input: 128-band mel spectrogram | ||
Frontend: 2-layer Residual convolution | ||
Backend: 12-layer Conformer | ||
Quantizer: a codebook for mel spectrogram | ||
""" | ||
|
||
def __init__( | ||
self, | ||
num_codebooks=1, | ||
codebook_dim=16, | ||
codebook_size=4096, | ||
features=["melspec_2048"], | ||
hop_length=240, | ||
n_mels=128, | ||
conv_dim=512, | ||
encoder_dim=1024, | ||
encoder_depth=12, | ||
mask_hop=0.4, | ||
mask_prob=0.6, | ||
is_flash=False, | ||
stat_path="./data/fma_stats.json", | ||
model_path="./data/pretrained_fma.pt", | ||
w2v2_config_path="facebook/wav2vec2-conformer-rope-large-960h-ft", | ||
): | ||
super(MusicFM25Hz, self).__init__() | ||
|
||
# global variables | ||
self.hop_length = hop_length | ||
self.mask_hop = mask_hop | ||
self.mask_prob = mask_prob | ||
self.num_codebooks = num_codebooks | ||
self.codebook_size = codebook_size | ||
self.features = features | ||
|
||
# load feature mean / std stats | ||
with open(stat_path, "r") as f: | ||
self.stat = json.load(f) | ||
|
||
# feature extractor | ||
self.preprocessor_melspec_2048 = MelSTFT( | ||
n_fft=2048, hop_length=hop_length, is_db=True | ||
) | ||
|
||
# random quantizer | ||
seed = 142 | ||
for feature in self.features: | ||
for i in range(num_codebooks): | ||
setattr( | ||
self, | ||
f"quantizer_{feature}_{i}", | ||
RandomProjectionQuantizer( | ||
n_mels * 4, codebook_dim, codebook_size, seed=seed + i | ||
), | ||
) | ||
|
||
# two residual convolution layers + one projection layer | ||
self.conv = Conv2dSubsampling( | ||
1, conv_dim, encoder_dim, strides=[2, 2], n_bands=n_mels | ||
) | ||
|
||
# Conformer | ||
if is_flash: | ||
from modules.flash_conformer import ( | ||
Wav2Vec2ConformerEncoder, | ||
Wav2Vec2ConformerConfig, | ||
) | ||
else: | ||
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( | ||
Wav2Vec2ConformerEncoder, | ||
Wav2Vec2ConformerConfig, | ||
) | ||
config = Wav2Vec2ConformerConfig.from_pretrained( | ||
w2v2_config_path | ||
) | ||
config.num_hidden_layers = encoder_depth | ||
config.hidden_size = encoder_dim | ||
|
||
self.conformer = Wav2Vec2ConformerEncoder(config) | ||
|
||
# projection | ||
self.linear = nn.Linear(encoder_dim, codebook_size) | ||
|
||
# loss function | ||
self.loss = nn.CrossEntropyLoss() | ||
|
||
# cls token (used for sequence classification) | ||
random.seed(seed) | ||
self.cls_token = nn.Parameter(torch.randn(encoder_dim)) | ||
|
||
# load model | ||
if model_path: | ||
S = torch.load(model_path)["state_dict"] | ||
SS = {k[6:]: v for k, v in S.items()} | ||
self.load_state_dict(SS, strict=True) | ||
|
||
def masking(self, x): | ||
"""random masking of 400ms with given probability""" | ||
mx = x.clone() | ||
b, t = mx.shape | ||
len_masking_raw = int(24000 * self.mask_hop) | ||
len_masking_token = int(24000 / self.hop_length / 2 / 2 * self.mask_hop) | ||
|
||
# get random mask indices | ||
start_indices = torch.rand(b, t // len_masking_raw) < self.mask_prob | ||
time_domain_masked_indices = torch.nonzero( | ||
start_indices.repeat_interleave(len_masking_raw, dim=1) | ||
) | ||
token_domain_masked_indices = torch.nonzero( | ||
start_indices.repeat_interleave(len_masking_token, dim=1) | ||
) | ||
|
||
# mask with random values | ||
masking_noise = ( | ||
torch.randn(time_domain_masked_indices.shape[0], dtype=x.dtype) * 0.1 | ||
) # 0 mean 0.1 std | ||
mx[tuple(time_domain_masked_indices.t())] = masking_noise.to(x.device) | ||
|
||
return mx, token_domain_masked_indices | ||
|
||
@torch.no_grad() | ||
def preprocessing(self, x, features): | ||
"""extract classic audio features""" | ||
# check precision | ||
if x.dtype == torch.float16: | ||
precision = 16 | ||
else: | ||
precision = 32 | ||
|
||
out = {} | ||
for key in features: | ||
layer = getattr(self, "preprocessor_%s" % key) | ||
out[key] = layer.float()(x.float())[..., :-1] | ||
if precision == 16: | ||
out[key] = out[key].half() | ||
return out | ||
|
||
def encoder(self, x): | ||
"""2-layer conv + w2v-conformer""" | ||
x = self.conv(x) | ||
out = self.conformer(x, output_hidden_states=True) | ||
hidden_emb = out["hidden_states"] | ||
last_emb = out["last_hidden_state"] | ||
logits = self.linear(last_emb) | ||
logits = { | ||
key: logits[:, :, i * self.codebook_size : (i + 1) * self.codebook_size] | ||
for i, key in enumerate(self.features) | ||
} | ||
return logits, hidden_emb | ||
|
||
@torch.no_grad() | ||
def normalize(self, x): | ||
"""normalize the input audio to have zero mean unit variance""" | ||
for key in x.keys(): | ||
x[key] = (x[key] - self.stat["%s_mean" % key]) / self.stat["%s_std" % key] | ||
return x | ||
|
||
@torch.no_grad() | ||
def rearrange(self, x): | ||
"""rearrange the batch to flatten every 4 steps""" | ||
for key in x.keys(): | ||
if key == "chromagram": | ||
x[key] = rearrange(x[key], "b f t -> b t f") | ||
else: | ||
x[key] = rearrange(x[key], "b f (t s) -> b t (s f)", s=4) | ||
return x | ||
|
||
@torch.no_grad() | ||
def tokenize(self, x): | ||
out = {} | ||
for key in x.keys(): | ||
layer = getattr(self, "quantizer_%s" % key) | ||
out[key] = layer(x[key]) | ||
return out | ||
|
||
def get_targets(self, x): | ||
x = self.preprocessing(x, features=self.features) | ||
x = self.normalize(x) | ||
x = self.rearrange(x) | ||
target_tokens = self.tokenize(x) | ||
return target_tokens | ||
|
||
def get_predictions(self, x): | ||
# preprocessing | ||
x = self.preprocessing(x, features=["melspec_2048"]) | ||
x = self.normalize(x) | ||
|
||
# encoding | ||
logits, hidden_emb = self.encoder(x["melspec_2048"]) | ||
|
||
return logits, hidden_emb | ||
|
||
def get_latent(self, x, layer_ix=12): | ||
_, hidden_states = self.get_predictions(x) | ||
emb = hidden_states[layer_ix] | ||
return emb | ||
|
||
def get_loss(self, logits, target_tokens, masked_indices): | ||
losses = {} | ||
accuracies = {} | ||
for key in logits.keys(): | ||
masked_logits = logits[key][tuple(masked_indices.t())] | ||
masked_tokens = target_tokens[key][tuple(masked_indices.t())] | ||
losses[key] = self.loss(masked_logits, masked_tokens) | ||
accuracies[key] = ( | ||
torch.sum(masked_logits.argmax(-1) == masked_tokens) | ||
/ masked_tokens.numel() | ||
) | ||
return losses, accuracies | ||
|
||
def forward(self, x): | ||
# get target feature tokens | ||
target_tokens = self.get_targets(x) | ||
|
||
# masking | ||
x, masked_indices = self.masking(x) | ||
|
||
# forward | ||
logits, hidden_emb = self.get_predictions(x) | ||
|
||
# get loss | ||
losses, accuracies = self.get_loss(logits, target_tokens, masked_indices) | ||
|
||
return logits, hidden_emb, losses, accuracies |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# MIT License | ||
# | ||
# Copyright 2023 ByteDance Inc. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), | ||
# to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | ||
# IN THE SOFTWARE. | ||
|
||
from torch import nn | ||
from einops import rearrange | ||
|
||
|
||
class Res2dModule(nn.Module): | ||
def __init__(self, idim, odim, stride=(2, 2)): | ||
super(Res2dModule, self).__init__() | ||
self.conv1 = nn.Conv2d(idim, odim, 3, padding=1, stride=stride) | ||
self.bn1 = nn.BatchNorm2d(odim) | ||
self.conv2 = nn.Conv2d(odim, odim, 3, padding=1) | ||
self.bn2 = nn.BatchNorm2d(odim) | ||
self.relu = nn.ReLU() | ||
|
||
# residual | ||
self.diff = False | ||
if (idim != odim) or (stride[0] > 1): | ||
self.conv3 = nn.Conv2d(idim, odim, 3, padding=1, stride=stride) | ||
self.bn3 = nn.BatchNorm2d(odim) | ||
self.diff = True | ||
|
||
def forward(self, x): | ||
out = self.bn2(self.conv2(self.relu(self.bn1(self.conv1(x))))) | ||
if self.diff: | ||
x = self.bn3(self.conv3(x)) | ||
out = x + out | ||
out = self.relu(out) | ||
return out | ||
|
||
|
||
class Conv2dSubsampling(nn.Module): | ||
"""Convolutional 2D subsampling (to 1/4 length). | ||
Args: | ||
idim (int): Input dimension. | ||
hdim (int): Hidden dimension. | ||
odim (int): Output dimension. | ||
strides (list): Sizes of strides. | ||
n_bands (int): Number of frequency bands. | ||
""" | ||
|
||
def __init__(self, idim, hdim, odim, strides=[2, 2], n_bands=64): | ||
"""Construct an Conv2dSubsampling object.""" | ||
super(Conv2dSubsampling, self).__init__() | ||
|
||
self.conv = nn.Sequential( | ||
Res2dModule(idim, hdim, (2, strides[0])), | ||
Res2dModule(hdim, hdim, (2, strides[1])), | ||
) | ||
self.linear = nn.Linear(hdim * n_bands // 2 // 2, odim) | ||
|
||
def forward(self, x): | ||
"""Subsample x. | ||
Args: | ||
x (torch.Tensor): Input tensor (#batch, idim, time). | ||
Returns: | ||
torch.Tensor: Subsampled tensor (#batch, time', odim), | ||
where time' = time // 4. | ||
""" | ||
|
||
if x.dim() == 3: | ||
x = x.unsqueeze(1) # (b, c, f, t) | ||
x = self.conv(x) | ||
x = rearrange(x, "b c f t -> b t (c f)") | ||
x = self.linear(x) | ||
return x |
Oops, something went wrong.