Reference: Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
Variables | Meaning |
---|---|
pop | The number of population |
lb | List, the lower bound of the i-th component is lb[i] |
ub | List, the upper bound of the i-th component is ub[i] |
iter | The maximum number of iterations |
dim | The dimension, dim = len(lb) = len(ub) |
pos | List, the position of each wolf |
score | List, the score of each wolf |
iter_best | List, the best so-far score of each iteration |
alpha_pos | List, the position of the alpha wolf |
alpha_score | The score of alpha wolf |
beta_pos | List, the position of the beta wolf |
beta_score | The score of the beta wolf |
delta_pos | List, the position of the delta wolf |
delta_score | The score of the delta wolf |
if __name__ == '__main__':
pop = 200
lb = [0, 0, 10, 10]
ub = [99, 99, 200, 200]
iter = 100
print(main(pop, lb, ub, iter))
{
'best solution': [1.3021065176429443, 0.6432278697383198, 67.39566614500494, 10.432203586211408],
'best score': 8087.875089101558
}