-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_FGDMAD.py
47 lines (41 loc) · 1.7 KB
/
eval_FGDMAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import os
import pytorch_lightning as pl
import yaml
from models.FGDMAD import FGDMAD
from utils.argparser import init_args
from utils.dataset import get_dataset_and_loader
import torch
import numpy as np
import random
from pytorch_lightning.loggers import TensorBoardLogger
if __name__== '__main__':
# Parse command line arguments and load config file
parser = argparse.ArgumentParser(description='MoCoDAD')
parser.add_argument('-c', '--config', type=str, required=True)
args = parser.parse_args()
args = yaml.load(open(args.config), Loader=yaml.FullLoader)
args = argparse.Namespace(**args)
args = init_args(args)
# Set seeds
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
pl.seed_everything(args.seed)
#torch.cuda.manual_seed(args.seed)
logger = TensorBoardLogger(save_dir='/root/tf-logs/', name="my_model")
# Initialize the model
model = FGDMAD(args)
if args.load_tensors:
# Load tensors and test
model.test_on_saved_tensors(split_name=args.split)
else:
# Load test data
print('Loading data and creating loaders.....')
ckpt_path = os.path.join(args.ckpt_dir, args.load_ckpt)
dataset, loader, _, _ = get_dataset_and_loader(args, split=args.split)
#_, data_loader, _, val_loader = get_dataset_and_loader(args, split=args.split, validation=args.validation)
# Initialize trainer and test
trainer = pl.Trainer(accelerator=args.accelerator, devices=args.devices[:1],
default_root_dir=args.ckpt_dir, max_epochs=1, logger=logger)
out = trainer.test(model, dataloaders=loader, ckpt_path=ckpt_path)