·
2 commits
to release
since this release
Codes for the manuscript "Deep Learning-Based Recommendation System for Metal-Organic Frameworks (MOFs)"
This work presents a recommendation system for metal-organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation.