Skip to content

Commit

Permalink
Updated
Browse files Browse the repository at this point in the history
  • Loading branch information
Ryan Vergel committed Mar 21, 2023
1 parent 3990372 commit 1739865
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 36 deletions.
10 changes: 3 additions & 7 deletions Tutorials/pytorch-subgraphs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,15 +27,11 @@ Author: Daniele Bagni, Xilinx Inc
</table>
</div>

### Current status

1. Tested with PyTorch 1.7.1 within [Vitis AI 2.0](https://github.com/Xilinx/Vitis-AI/tree/v2.0) on an Ubuntu 18.04.5 Desktop PC and tested in hardware on VCK190 Production board (``xilinx-vck190-dpu-v2021.2-v2.2.0.img.gz``) and ZCU102 board (``xilinx-zcu102-dpu-v2021.2-v2.0.0.img.gz``) both from the Vitis AI 2.0.
- Version: Vitis AI 2.5
- Support: ZCU102
- Last update: 21 Mar. 2023

1. Tested with PyTorch 1.7.1 within [Vitis AI 2.5](https://github.com/Xilinx/Vitis-AI) on an Ubuntu 18.04.5 Desktop PC and tested in hardware on VCK190 Production board (``xilinx-vck190-dpu-v2022.1-v2.5.0.img.gz``) and ZCU102 board (``xilinx-zcu102-dpu-v2022.1-v2.5.0.img.gz``) both from the Vitis AI 2.5.



#### Date: 20 June 2022



Expand Down
30 changes: 1 addition & 29 deletions Tutorials/pytorch-subgraphs/files/application/main_subgraphs.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,7 @@
"""

"""
Author: Daniele Bagni & Jon Cory
date: 20 June 2022
date: 20 Mar 2023
"""

from ctypes import *
Expand Down Expand Up @@ -116,33 +115,6 @@ def Linear(xx):
np.save('cnn_out.bin', y)
return y

"""
# yet to be checked
def LeakyReLU(K, x):
data = np.asarray( x, dtype="float32" )
print("LKRE inp shape ", data.shape)
size = data[0].size
shape = data[0].shape
d = data[0].reshape([1, size])
print("LKRE inp: ", d)
pos_index = (d >= 0);
neg_index = (d < 0); Linear(out6)
coef = np.float32(K)
y_n = d[np.ix_(neg_index)]*coef
y_p = d[np.ix_(pos_index)]
y = [y_n, y_p]
print("LKRE out: ", y)
x[0] = y.reshape([shape])
return x
"""

def fix2float(fix_point, value):
return value.astype(np.float32) * np.exp2(fix_point, dtype=np.float32)


def float2fix(fix_point, value):
return value.astype(np.float32) / np.exp2(fix_point, dtype=np.float32)


def execute_async(dpu, tensor_buffers_dict):
input_tensor_buffers = [
Expand Down

0 comments on commit 1739865

Please sign in to comment.