-
Notifications
You must be signed in to change notification settings - Fork 200
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
72 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
from typing import Union | ||
|
||
from torch import Tensor | ||
|
||
from brevitas.proxy.float_runtime_quant import ActFloatQuantProxyFromInjectorBase | ||
from brevitas.quant_tensor import GroupwiseFloatQuantTensor | ||
from brevitas.utils.quant_utils import _CachedIOGroupwiseFloat | ||
|
||
|
||
class GroupwiseActFloatQuantProxyFromInjector(ActFloatQuantProxyFromInjectorBase): | ||
|
||
@property | ||
def group_dim(self): | ||
return self.quant_injector.group_dim | ||
|
||
@property | ||
def group_size(self): | ||
return self.quant_injector.group_size | ||
|
||
def forward( | ||
self, x: Union[Tensor, | ||
GroupwiseFloatQuantTensor]) -> Union[Tensor, GroupwiseFloatQuantTensor]: | ||
out = x | ||
if self.fused_activation_quant_proxy is not None: | ||
y = x | ||
if isinstance(y, GroupwiseFloatQuantTensor): | ||
y = y.value | ||
|
||
if self.export_mode: | ||
y = self.fused_activation_quant_proxy.activation_impl(y) | ||
y = self.export_handler(y) | ||
elif not self.is_quant_enabled: | ||
y = self.fused_activation_quant_proxy.activation_impl(y) | ||
else: | ||
y = self.fused_activation_quant_proxy(y) | ||
# If y is an empty GroupwiseFloatQuantTensor, we need to check if this is a passthrough proxy, | ||
# otherwise return a simple Tensor | ||
# We exclude the last two values (inf_values and nan_values) | ||
if isinstance(y, tuple) and not any(map(lambda f: f is None, y[:-2])): | ||
out = GroupwiseFloatQuantTensor(*y, signed=self.is_signed, training=self.training) | ||
elif self.is_passthrough_act: # preserve scale/zp/bit/sign even without output quant | ||
if isinstance(y, tuple): | ||
y = y[0] | ||
if isinstance(x, GroupwiseFloatQuantTensor): | ||
out = GroupwiseFloatQuantTensor( | ||
y, | ||
x.scale, | ||
x.zero_point, | ||
self.group_dim, | ||
self.group_size, | ||
x.mantissa_bit_width, | ||
x.exponent_bit_width, | ||
x.exponent_bias, | ||
x.signed, | ||
self.training, | ||
x.saturating, | ||
x.inf_values, | ||
x.nan_values) | ||
else: | ||
out = y | ||
else: | ||
if isinstance(y, tuple): | ||
y = y[0] | ||
out = y | ||
else: | ||
# If fused activation quant proxy is not enabled, return the input | ||
out = x | ||
if not self.training and self.cache_inference_quant_act and isinstance( | ||
out, GroupwiseFloatQuantTensor): | ||
cached_out = _CachedIOGroupwiseFloat(out.detach(), self.cache_quant_io_metadata_only) | ||
self._cached_act = cached_out | ||
return out |