Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix (scaling)!: clamp to avoid inf/nan in forward/backward #1097

Merged
merged 5 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions src/brevitas/core/scaling/runtime.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import brevitas
import brevitas.config as config
from brevitas.core.function_wrapper import Identity
from brevitas.core.restrict_val import _ClampValue
from brevitas.core.restrict_val import _RestrictClampValue
from brevitas.core.restrict_val import FloatRestrictValue
from brevitas.core.stats import _ParameterListStats
Expand Down Expand Up @@ -95,6 +96,7 @@ def __init__(
restrict_value_impl=restrict_threshold_impl)
self.restrict_scaling_pre = restrict_scaling_impl.restrict_init_module()
self.restrict_threshold_pre = restrict_threshold_impl.restrict_init_module()
self.clamp_scaling = _ClampValue(scaling_min_val)

@brevitas.jit.script_method
def forward(
Expand All @@ -103,6 +105,8 @@ def forward(
threshold = torch.ones(1).type_as(stats)
threshold = self.restrict_threshold_pre(threshold)
threshold = self.restrict_clamp_threshold(threshold)
# Clamping avoids eventual log(0) with restrict_val
stats = self.clamp_scaling(stats)
stats = self.restrict_scaling_pre(stats)
stats = self.affine_rescaling(stats)
stats = self.restrict_clamp_scaling(stats)
Expand Down Expand Up @@ -218,6 +222,7 @@ def __init__(
)
self.restrict_threshold_pre = self.restrict_clamp_threshold.restrict_value_impl.restrict_init_module(
)
self.clamp_scaling = _ClampValue(scaling_min_val)

@brevitas.jit.script_method
def forward(
Expand All @@ -229,8 +234,10 @@ def forward(
stats_input_reshaped = self.input_view_impl(stats_input)
threshold = self.restrict_clamp_threshold(self.restrict_threshold_pre(threshold))
out = self.scaling_stats_impl(stats_input_reshaped)
# Apply log scaling
# Clamping avoids eventual log(0) with restrict_val
out = self.clamp_scaling(out)
# Apply restrict_value preprocess
out = self.restrict_scaling_pre(out)
# Scaling min val
# Apply restrict_value and clamping
out = self.restrict_clamp_scaling(out) / threshold
return out
9 changes: 8 additions & 1 deletion src/brevitas/core/scaling/standalone.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@ def forward(self, placeholder: Tensor, threshold: Optional[Tensor] = None) -> Te
# We first apply any restriction to scaling
# For IntQuant, this is no-op, retrocompatible.
threshold = self.restrict_clamp_threshold(self.restrict_threshold_pre(threshold))
# We can clamp after restrict val since the learned parameter is already in log-domain
value = abs_binary_sign_grad(self.restrict_clamp_scaling(self.value))
return value / threshold

Expand Down Expand Up @@ -234,6 +235,7 @@ def __init__(
device)
self.restrict_threshold_pre = restrict_threshold_impl.restrict_init_module()
self.restrict_inplace_scaling_pre = restrict_scaling_impl.restrict_init_inplace_module()
self.clamp_scaling = _ClampValue(scaling_min_val)

self.init_done: bool = brevitas.jit.Attribute(False, bool)
self.local_loss_mode: bool = brevitas.jit.Attribute(False, bool)
Expand All @@ -255,7 +257,10 @@ def forward(self, x: Tensor, threshold: Optional[Tensor] = None) -> Tensor:
# workaround to avoid find_ununsed_parameter=True in DDP
stats = stats + 0. * self.value
if self.local_loss_mode:
# Scaling implementation before/after restrict_val is performed in stats_scaling_impl
return self.stats_scaling_impl(stats, threshold)
# Clamping avoids eventual log(0) with restrict_val
stats = self.clamp_scaling(stats)
stats = self.restrict_inplace_scaling_pre(stats)
threshold = self.stats_scaling_impl.restrict_clamp_threshold(
self.restrict_threshold_pre(threshold))
Expand Down Expand Up @@ -412,12 +417,14 @@ def forward(self, stats_input: Tensor, threshold: Optional[Tensor] = None) -> Te
else:
if self.counter <= self.collect_stats_steps:
out = self.buffer
# No clamping is necessary since statistics are already clamped in training_forward
out = self.restrict_scaling_pre(out)
else:
out = self.value
threshold = self.restrict_threshold(self.restrict_threshold_pre(threshold))
out = self.clamp_scaling(self.restrict_scaling(out))
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I believe self.clamp_scaling is not necessary here because we're already in log domain, and self.restrict_scaling is responsible only for rounding and potential conversion from log to real domain (i.e., exponential).

Applying clamping before restrict_val means we can't get to negative values, thus scaling values between 0 and 1.
@nickfraser

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sounds right to me!

out = self.restrict_scaling(out)
out = out / threshold
# We can clamp after restrict val since the learned parameter is already in log-domain
out = abs_binary_sign_grad(self.clamp_scaling(out))
return out

Expand Down
54 changes: 54 additions & 0 deletions tests/brevitas/core/test_runtime_scaling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import torch

from brevitas.core.function_wrapper.misc import Identity
from brevitas.core.restrict_val import PowerOfTwoRestrictValue
from brevitas.core.scaling.runtime import RuntimeDynamicGroupStatsScaling
from brevitas.core.scaling.runtime import RuntimeStatsScaling
from brevitas.core.scaling.runtime import StatsFromParameterScaling
from brevitas.core.stats.stats_op import AbsMax
from brevitas.core.stats.stats_wrapper import SCALAR_SHAPE


def test_scaling_min_val_parameter():
inp = torch.zeros(1, 5, requires_grad=True)
scaling_min_val = torch.tensor(1e-6)
scaling_op = StatsFromParameterScaling(
scaling_stats_impl=AbsMax(),
scaling_stats_input_view_shape_impl=Identity(),
scaling_stats_input_concat_dim=None,
tracked_parameter_list=[inp],
scaling_shape=SCALAR_SHAPE,
restrict_scaling_impl=PowerOfTwoRestrictValue(),
scaling_min_val=scaling_min_val)
pre_scale = scaling_op(inp)
pre_scale.sum().backward()
assert not torch.isnan(inp.grad).any()


def test_scaling_min_val_runtime():
inp = torch.zeros(1, 5, requires_grad=True)
scaling_min_val = torch.tensor(1e-6)
scaling_op = RuntimeStatsScaling(
scaling_stats_impl=AbsMax(),
scaling_stats_input_view_shape_impl=Identity(),
scaling_shape=SCALAR_SHAPE,
restrict_scaling_impl=PowerOfTwoRestrictValue(),
scaling_min_val=scaling_min_val)
pre_scale = scaling_op(inp)
pre_scale.sum().backward()
assert not torch.isnan(inp.grad).any()


def test_scaling_min_val_dynamic_group():
inp = torch.zeros(1, 6, requires_grad=True)
scaling_min_val = torch.tensor(1e-6)
scaling_op = RuntimeDynamicGroupStatsScaling(
group_size=3,
group_dim=1,
input_view_impl=Identity(),
scaling_min_val=scaling_min_val,
restrict_scaling_impl=PowerOfTwoRestrictValue(),
scaling_stats_impl=AbsMax())
pre_scale = scaling_op(inp)
pre_scale.sum().backward()
assert not torch.isnan(inp.grad).any()
38 changes: 38 additions & 0 deletions tests/brevitas/core/test_standalone_scaling.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,13 @@
import warnings

import torch

from brevitas.core.function_wrapper.misc import Identity
from brevitas.core.restrict_val import PowerOfTwoRestrictValue
from brevitas.core.scaling import ParameterFromRuntimeStatsScaling
from brevitas.core.scaling.standalone import ParameterFromStatsFromParameterScaling
from brevitas.core.stats.stats_op import AbsMax
from brevitas.core.stats.stats_wrapper import SCALAR_SHAPE


def test_scaling_state_dict():
Expand All @@ -12,3 +18,35 @@ def test_scaling_state_dict():
scaling_op.state_dict()
for w in wlist:
assert "Positional args are being deprecated" not in str(w.message)


@torch.no_grad()
def test_scaling_min_val_runtime():
scaling_min_val = torch.tensor(1e-6)
scaling_op = ParameterFromRuntimeStatsScaling(
collect_stats_steps=1,
scaling_stats_impl=AbsMax(),
scaling_min_val=scaling_min_val,
restrict_scaling_impl=PowerOfTwoRestrictValue())
inp = torch.zeros(1, 5)
pre_scale = scaling_op(inp)
value_scale_converted = scaling_op(inp)
scaling_op.eval()
assert not torch.isinf(scaling_op.value).any()


@torch.no_grad()
def test_scaling_min_val_param():
inp = torch.zeros(1, 5)
scaling_min_val = torch.tensor(1e-6)
scaling_op = ParameterFromStatsFromParameterScaling(
scaling_stats_impl=AbsMax(),
scaling_min_val=scaling_min_val,
restrict_scaling_impl=PowerOfTwoRestrictValue(),
scaling_stats_input_view_shape_impl=Identity(),
scaling_stats_input_concat_dim=None,
tracked_parameter_list=[inp],
scaling_shape=SCALAR_SHAPE)
pre_scale = scaling_op(inp)
value_scale_converted = scaling_op(inp)
assert not torch.isinf(scaling_op.value).any()
Loading