Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Examples (a2q): adding links for pretrained models #707

Merged
merged 1 commit into from
Sep 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 19 additions & 12 deletions src/brevitas_examples/super_resolution/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Integer-Quantized Super Resolution Experiments with Brevitas

This directory contains scripts demonstrating how to train integer-quantized super resolution models using [Brevitas](https://github.com/Xilinx/brevitas).
This directory contains scripts demonstrating how to train integer-quantized super resolution models using Brevitas.
Code is also provided to demonstrate accumulator-aware quantization (A2Q) as proposed in our ICCV 2023 paper "[A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance](https://arxiv.org/abs/2308.13504)".

## Experiments
Expand All @@ -12,25 +12,32 @@ During inference center cropping is applied.
Inputs are then downscaled by 2x and then used to train the model directly in the RGB space.
Note that this is a difference from many academic works that train only on the Y-channel in YCbCr format.

| Model Name | Upscale Factor | Weight quantization | Activation quantization | Peak Signal-to-Noise Ratio |
| Model Name | Upscale Factor | Weight quantization | Activation quantization | Peak Signal-to-Noise Ratio |
|-----------------------------|----------------|---------------------|-------------------------|----------------------------|
| bicubic_interp | x2 | N/A | N/A | 28.71 |
| [float_espcn_x2]() | x2 | float32 | float32 | 31.03 |
| bicubic_interp | x2 | N/A | N/A | 28.71 |
| [float_espcn_x2](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/float_espcn_x2-2f85a454.pth) | x2 | float32 | float32 | 31.03 |
||
| [quant_espcn_x2_w8a8_base]() | x2 | int8 | (u)int8 | 30.96 |
| [quant_espcn_x2_w8a8_a2q_32b]() | x2 | int8 | (u)int8 | 30.79 |
| [quant_espcn_x2_w8a8_a2q_16b]() | x2 | int8 | (u)int8 | 30.56 |
| [quant_espcn_x2_w8a8_base](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w8a8_base-f761e4a1.pth) | x2 | int8 | (u)int8 | 30.96 |
| [quant_espcn_x2_w8a8_a2q_32b](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w8a8_a2q_32b-85470d9b.pth) | x2 | int8 | (u)int8 | 30.79 |
| [quant_espcn_x2_w8a8_a2q_16b](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w8a8_a2q_16b-f9e1da66.pth) | x2 | int8 | (u)int8 | 30.56 |
||
| [quant_espcn_x2_w4a4_base]() | x2 | int4 | (u)int4 | 30.30 |
| [quant_espcn_x2_w4a4_a2q_32b]() | x2 | int4 | (u)int4 | 30.27 |
| [quant_espcn_x2_w4a4_a2q_13b]() | x2 | int4 | (u)int4 | 30.24 |
| [quant_espcn_x2_w4a4_base](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w4a4_base-80658e6d.pth) | x2 | int4 | (u)int4 | 30.30 |
| [quant_espcn_x2_w4a4_a2q_32b](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w4a4_a2q_32b-8702a412.pth) | x2 | int4 | (u)int4 | 30.27 |
| [quant_espcn_x2_w4a4_a2q_13b](https://github.com/Xilinx/brevitas/releases/download/super_res_r1/quant_espcn_x2_w4a4_a2q_13b-9fff234e.pth) | x2 | int4 | (u)int4 | 30.24 |


## Train

To start training a model from scratch (*e.g.*, `quant_espcn_x2_w8a8_a2q_32b`) run:
All models are trained from scratch as follows:
```bash
python train_model.py --data_root=data --model=quant_espcn_x2_w8a8_a2q_32b
python train_model.py^
--data_root=./data^
--model=quant_espcn_x2_w8a8_a2q_32b^
--batch_size=8^
--learning_rate=0.001^
--weight_decay=0.00001^
--gamma=0.999^
--step_size=1
```

## Evaluate
Expand Down
13 changes: 8 additions & 5 deletions src/brevitas_examples/super_resolution/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,13 +45,16 @@
act_bit_width=4,
acc_bit_width=13)}

root_url = 'https://github.com/Xilinx/brevitas/releases/download/super_res-r0'
root_url = 'https://github.com/Xilinx/brevitas/releases/download/super_res_r1'

model_url = {
'float_espcn_x2': f'{root_url}/float_espcn_x2-2f3821e3.pth',
'quant_espcn_x2_w8a8_base': f'{root_url}/quant_espcn_x2_w8a8_base-7d54e29c.pth',
'quant_espcn_x2_w8a8_a2q_32b': f'{root_url}/quant_espcn_x2_w8a8_a2q_32b-0b1f361d.pth',
'quant_espcn_x2_w8a8_a2q_16b': f'{root_url}/quant_espcn_x2_w8a8_a2q_16b-3c4acd35.pth'}
'float_espcn_x2': f'{root_url}/float_espcn_x2-2f85a454.pth',
'quant_espcn_x2_w4a4_a2q_13b': f'{root_url}/quant_espcn_x2_w4a4_a2q_13b-9fff234e.pth',
'quant_espcn_x2_w4a4_a2q_32b': f'{root_url}/quant_espcn_x2_w4a4_a2q_32b-8702a412.pth',
'quant_espcn_x2_w4a4_base': f'{root_url}/quant_espcn_x2_w4a4_base-80658e6d.pth',
'quant_espcn_x2_w8a8_a2q_16b': f'{root_url}/quant_espcn_x2_w8a8_a2q_16b-f9e1da66.pth',
'quant_espcn_x2_w8a8_a2q_32b': f'{root_url}/quant_espcn_x2_w8a8_a2q_32b-85470d9b.pth',
'quant_espcn_x2_w8a8_base': f'{root_url}/quant_espcn_x2_w8a8_base-f761e4a1.pth'}


def get_model_by_name(name: str, pretrained: bool = False) -> Union[FloatESPCN, QuantESPCN]:
Expand Down