Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat (ptq): flag to disable/enable signed activations #714

Merged
merged 3 commits into from
Oct 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@
'gpfq': [False, True], # Enable/Disable GPFQ
'gpfq_p': [0.25, 0.75], # GPFQ P
'act_quant_percentile': [99.9, 99.99, 99.999], # Activation Quantization Percentile
'uint_sym_act_for_unsigned_values': [True], # Whether to use unsigned act quant when possible
}

OPTIONS_DEFAULT = {
Expand All @@ -87,6 +88,7 @@
'gpfq_p': [0.25], # GPFQ P
'gptq_act_order': [False], # Use act_order euristics for GPTQ
'act_quant_percentile': [99.999], # Activation Quantization Percentile
'uint_sym_act_for_unsigned_values': [True], # Whether to use unsigned act quant when possible
}

parser = argparse.ArgumentParser(description='PyTorch ImageNet PTQ Validation')
Expand Down Expand Up @@ -228,7 +230,8 @@ def ptq_torchvision_models(args):
weight_quant_granularity=config_namespace.weight_quant_granularity,
act_quant_percentile=config_namespace.act_quant_percentile,
act_quant_type=config_namespace.act_quant_type,
scale_factor_type=config_namespace.scale_factor_type)
scale_factor_type=config_namespace.scale_factor_type,
uint_sym_act_for_unsigned_values=config_namespace.uint_sym_act_for_unsigned_values)

# If available, use the selected GPU
if args.gpu is not None:
Expand Down
20 changes: 15 additions & 5 deletions src/brevitas_examples/imagenet_classification/ptq/ptq_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ def quantize_model(
act_param_method='stats',
weight_quant_type='sym',
act_quant_granularity='per_tensor',
uint_sym_act_for_unsigned_values=True,
dtype=torch.float32):
# Define what quantize function to use and, based on the given configuration, its arguments
quantize_fn = QUANTIZE_MAP[backend]
Expand All @@ -127,6 +128,7 @@ def bit_width_fn(module, other_bit_width):
act_bit_width_or_lambda = act_bit_width if backend != 'layerwise' else lambda module: bit_width_fn(
module, act_bit_width)
quant_layer_map, quant_layerwise_layer_map, quant_act_map, quant_identity_map = create_quant_maps(dtype=dtype,
uint_sym_act_for_unsigned_values=uint_sym_act_for_unsigned_values,
bias_bit_width=bias_bit_width,
weight_bit_width=weight_bit_width_or_lambda,
weight_param_method=weight_param_method,
Expand Down Expand Up @@ -164,6 +166,7 @@ def create_quant_maps(
weight_quant_type,
weight_quant_granularity,
weight_narrow_range,
uint_sym_act_for_unsigned_values=True,
act_bit_width=None,
act_scale_type=None,
act_param_method=None,
Expand Down Expand Up @@ -235,7 +238,6 @@ def kwargs_prefix(prefix, weight_kwargs):
'softmax_input_quant': None,
'attn_output_weights_quant': sym_act_quant,
'attn_output_weights_bit_width': act_bit_width,
'attn_output_weights_signed': False,
'q_scaled_quant': sym_act_quant,
'q_scaled_bit_width': act_bit_width,
'k_transposed_quant': sym_act_quant,
Expand Down Expand Up @@ -272,18 +274,26 @@ def kwargs_prefix(prefix, weight_kwargs):

act_quant_and_bit_width = {'act_quant': act_quant, 'bit_width': act_bit_width}
quant_act_kwargs = {**act_quant_and_bit_width, 'return_quant_tensor': True}

# For potentially unsigned activations, we create a separate dict
unsigned_quant_act_kwargs = quant_act_kwargs.copy()
if uint_sym_act_for_unsigned_values:
# In case we support unsigned activation, the output of softmax can be unsigned
quant_mha_kwargs['attn_output_weights_signed'] = False
unsigned_quant_act_kwargs['signed'] = False

quant_act_map = {
torch.nn.ReLU: (qnn.QuantReLU, {
**quant_act_kwargs, 'signed': False}),
**unsigned_quant_act_kwargs}),
torch.nn.ReLU6: (qnn.QuantReLU, {
**quant_act_kwargs, 'signed': False}),
**unsigned_quant_act_kwargs}),
torch.nn.Sigmoid: (qnn.QuantSigmoid, {
**quant_act_kwargs, 'signed': False}),}
**unsigned_quant_act_kwargs}),}
quant_identity_map = {
'signed': (qnn.QuantIdentity, {
**quant_act_kwargs}),
'unsigned': (qnn.QuantIdentity, {
**quant_act_kwargs, 'signed': False}),}
**unsigned_quant_act_kwargs}),}
quant_layerwise_layer_map = {
torch.nn.Linear: (qnn.QuantLinear, layerwise_quant_wbiol_kwargs),
torch.nn.MultiheadAttention: (qnn.QuantMultiheadAttention, layerwise_quant_mha_kwargs),
Expand Down
Loading