Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove quantmaxpool #858

Merged
merged 5 commits into from
Feb 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 0 additions & 42 deletions src/brevitas/export/onnx/standard/qoperator/handler/pool.py

This file was deleted.

8 changes: 2 additions & 6 deletions src/brevitas/export/onnx/standard/qoperator/manager.py
capnramses marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,6 @@
from .handler.parameter import StdQOpONNXQuantConv1dHandler
from .handler.parameter import StdQOpONNXQuantConv2dHandler
from .handler.parameter import StdQOpONNXQuantLinearHandler
from .handler.pool import StdQOpONNXQuantMaxPool1d
from .handler.pool import StdQOpONNXQuantMaxPool2d


class StdQOpONNXManager(StdONNXBaseManager):
Expand All @@ -43,7 +41,7 @@ class StdQOpONNXManager(StdONNXBaseManager):
F.max_pool3d,
F.adaptive_max_pool1d,
F.adaptive_max_pool2d,
F.adaptive_max_pool3d,]
F.adaptive_max_pool3d]

handlers = [
StdQOpONNXQuantConv1dHandler,
Expand All @@ -53,9 +51,7 @@ class StdQOpONNXManager(StdONNXBaseManager):
StdQOpONNXQuantHardTanhHandler,
StdQOpONNXQuantIdentityHandler,
StdQOpONNXQuantTanhHandler,
StdQOpONNXQuantSigmoidHandler,
StdQOpONNXQuantMaxPool1d,
StdQOpONNXQuantMaxPool2d]
StdQOpONNXQuantSigmoidHandler]

onnx_passes = [
# remove unused graph inputs & initializers
Expand Down
60 changes: 0 additions & 60 deletions src/brevitas/export/torch/qoperator/handler/pool.py

This file was deleted.

4 changes: 0 additions & 4 deletions src/brevitas/export/torch/qoperator/manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,16 +20,12 @@
from .handler.parameter import PytorchQuantConv1dHandler
from .handler.parameter import PytorchQuantConv2dHandler
from .handler.parameter import PytorchQuantLinearHandler
from .handler.pool import PytorchQuantMaxPool1d
from .handler.pool import PytorchQuantMaxPool2d


class TorchQOpManager(BaseManager):
target_name = 'torch'

handlers = [
PytorchQuantMaxPool1d,
PytorchQuantMaxPool2d,
PytorchQuantHardTanhHandler,
PytorchQuantIdentityHandler,
PytorchQuantReLUHandler,
Expand Down
2 changes: 0 additions & 2 deletions src/brevitas/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,6 @@
from .quant_eltwise import QuantEltwiseAdd
from .quant_embedding import QuantEmbedding
from .quant_linear import QuantLinear
from .quant_max_pool import QuantMaxPool1d
from .quant_max_pool import QuantMaxPool2d
from .quant_mha import QuantMultiheadAttention
from .quant_rnn import QuantLSTM
from .quant_rnn import QuantRNN
Expand Down
88 changes: 0 additions & 88 deletions src/brevitas/nn/quant_max_pool.py

This file was deleted.

1 change: 0 additions & 1 deletion tests/brevitas/export/test_qonnx_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
from brevitas.nn import QuantConv2d
from brevitas.nn import QuantIdentity
from brevitas.nn import QuantLinear
from brevitas.nn import QuantMaxPool2d
from brevitas.nn import QuantReLU
from brevitas.nn import TruncAvgPool2d
from brevitas.quant.scaled_int import Int4WeightPerTensorFloatDecoupled
Expand Down
63 changes: 0 additions & 63 deletions tests/brevitas/export/test_torch_qop.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
from brevitas.nn import QuantConv2d
from brevitas.nn import QuantIdentity
from brevitas.nn import QuantLinear
from brevitas.nn import QuantMaxPool2d
from brevitas.nn import QuantReLU
from brevitas.quant.scaled_int import Int8WeightPerTensorFloat
from brevitas.quant.scaled_int import Int16Bias
Expand Down Expand Up @@ -203,65 +202,3 @@ def forward(self, x):
pytorch_out = pytorch_qf_model(inp)
atol = model.act2.quant_output_scale().item() * TOLERANCE
assert pytorch_out.isclose(brevitas_out, rtol=0.0, atol=atol).all()


@jit_disabled_for_export()
def test_quant_max_pool2d_export():
IN_SIZE = (1, 1, IN_CH, IN_CH)
KERNEL_SIZE = 3

class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.act = QuantIdentity(
bit_width=8, act_quant=ShiftedUint8ActPerTensorFloat, return_quant_tensor=True)
self.pool = QuantMaxPool2d(
kernel_size=KERNEL_SIZE, stride=KERNEL_SIZE, return_quant_tensor=False)

def forward(self, x):
return self.pool(self.act(x))

inp = torch.randn(IN_SIZE)
model = Model()
model(inp) # collect scale factors
model.eval()
inp = torch.randn(IN_SIZE) * RANDN_STD + RANDN_MEAN # New input with bigger range
brevitas_out = model(inp)
pytorch_qf_model = export_torch_qop(model, input_t=inp)
pytorch_out = pytorch_qf_model(inp)
atol = model.act.quant_output_scale().item() * TOLERANCE
assert pytorch_out.isclose(brevitas_out, rtol=0.0, atol=atol).all()


@requires_pt_ge('9999', 'Darwin')
@jit_disabled_for_export()
def test_func_quant_max_pool2d_export():
IN_SIZE = (1, 1, IN_CH, IN_CH)
KERNEL_SIZE = 2

class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.act1 = QuantIdentity(
bit_width=8, act_quant=ShiftedUint8ActPerTensorFloat, return_quant_tensor=True)
self.act2 = QuantIdentity(
bit_width=8, act_quant=ShiftedUint8ActPerTensorFloat, return_quant_tensor=False)

def forward(self, x):
x = self.act1(x)
x = torch.nn.functional.max_pool2d(x, KERNEL_SIZE)
x = self.act2(x)
return x

inp = torch.randn(IN_SIZE)
model = Model()
model(inp) # collect scale factors
model.eval()
inp = torch.randn(IN_SIZE) * RANDN_STD + RANDN_MEAN # New input with bigger range
brevitas_out = model(inp)
pytorch_qf_model = export_torch_qop(model, input_t=inp)
pytorch_out = pytorch_qf_model(inp)
atol = model.act2.quant_output_scale().item() * TOLERANCE
assert pytorch_out.isclose(brevitas_out, rtol=0.0, atol=atol).all()
Loading