-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# Copyright (C) 2024, Advanced Micro Devices, Inc. | ||
# SPDX-License-Identifier: MIT | ||
|
||
# RUN: %PYTHON %s | FileCheck %s | ||
|
||
import air.backend.xrt as xrt_backend | ||
import air.compiler.aircc.main as aircc | ||
from air.dialects.air import * | ||
from air.dialects.func import FuncOp, ReturnOp | ||
from air.dialects.linalg import elemwise_binary | ||
from air.dialects.linalg.opdsl.lang import BinaryFn, TypeFn | ||
from air.dialects.memref import AllocOp, DeallocOp | ||
from air.dialects.scf import for_, yield_ | ||
from air.ir import * | ||
|
||
import numpy as np | ||
import filelock | ||
from ml_dtypes import bfloat16 | ||
|
||
verbose = True | ||
|
||
sizes = [ | ||
[1024], | ||
] | ||
|
||
dtypes = [ | ||
(np.int32, np.int32), | ||
# (np.int16, np.int32), | ||
# (np.int16, np.int16), | ||
# (np.float32, np.float32), | ||
# (bfloat16, np.float32), | ||
# (bfloat16, bfloat16), | ||
] | ||
|
||
|
||
def to_type(dtype): | ||
if dtype == np.int32: | ||
return T.i32() | ||
if dtype == np.int16: | ||
return T.i16() | ||
if dtype == np.float32: | ||
return F32Type.get() | ||
if dtype == bfloat16: | ||
return BF16Type.get() | ||
return None | ||
|
||
|
||
@module_builder | ||
def build_module(shape, idtype, odtype, tile_size): | ||
memrefTyIn = MemRefType.get(shape, to_type(idtype)) | ||
memrefTyOut = MemRefType.get(shape, to_type(odtype)) | ||
ChannelOp("ChanA") | ||
ChannelOp("ChanB") | ||
ChannelOp("ChanC") | ||
|
||
@FuncOp.from_py_func(memrefTyIn, memrefTyIn, memrefTyOut) | ||
def mul(arg0, arg1, arg2): | ||
@launch(operands=[arg0, arg1, arg2]) | ||
def launch_body(a, b, c): | ||
ChannelPut("ChanA", a) | ||
ChannelPut("ChanB", b) | ||
ChannelGet("ChanC", c) | ||
|
||
@segment(name="segment_0") | ||
def segment_body(): | ||
c = arith.ConstantOp.create_index(tile_size) | ||
@herd(name="herd_0", sizes=[1, 1], operands=[c]) | ||
def herd_body(x, y, sx, sy, count): | ||
mem_space = IntegerAttr.get(T.i32(), MemorySpace.L1) | ||
itile_type = MemRefType.get( | ||
shape=[tile_size], | ||
element_type=to_type(idtype), | ||
memory_space=mem_space, | ||
) | ||
otile_type = MemRefType.get( | ||
shape=[tile_size], | ||
element_type=to_type(odtype), | ||
memory_space=mem_space, | ||
) | ||
for _ in for_(count): | ||
tile_a = AllocOp(itile_type, [], []) | ||
tile_b = AllocOp(itile_type, [], []) | ||
tile_c = AllocOp(otile_type, [], []) | ||
ChannelGet("ChanA", tile_a) | ||
ChannelGet("ChanB", tile_b) | ||
elemwise_binary( | ||
tile_a, | ||
tile_b, | ||
outs=[tile_c], | ||
fun=BinaryFn.mul, | ||
cast=TypeFn.cast_unsigned, | ||
) | ||
ChannelPut("ChanC", tile_c) | ||
DeallocOp(tile_a) | ||
DeallocOp(tile_b) | ||
DeallocOp(tile_c) | ||
yield_([]) | ||
|
||
|
||
def run_test(size, idtype, odtype): | ||
|
||
mlir_module = build_module(size, idtype, odtype, 32) | ||
print(mlir_module) | ||
|
||
input_a = (np.random.rand(*size) * 127).astype(idtype).reshape(size) | ||
input_b = (np.random.rand(*size) * 127).astype(idtype).reshape(size) | ||
ref = (input_a * input_b).astype(odtype) | ||
input_c = np.ones_like(ref) | ||
|
||
backend = xrt_backend.XRTBackend(verbose=verbose) | ||
|
||
# run the module | ||
with filelock.FileLock("/tmp/npu.lock"): | ||
mul = backend.compile_and_load(mlir_module) | ||
print("running") | ||
(_, _, output_c) = mul(input_a, input_b, input_c) | ||
|
||
backend.unload() | ||
|
||
print("inputA:", input_a) | ||
print("inputB:", input_b) | ||
print("output:", output_c) | ||
|
||
if np.allclose(ref, output_c, 0.01): | ||
print("PASS!") | ||
return 1 | ||
else: | ||
print("failed.") | ||
return 0 | ||
|
||
|
||
passed = 0 | ||
for idtype, odtype in dtypes: | ||
for size in sizes: | ||
try: | ||
print("Testing size:", size, "dtype:", idtype, odtype) | ||
passed = passed + run_test(size, idtype, odtype) | ||
except Exception as e: | ||
print(e) | ||
|
||
num_tests = len(sizes) * len(dtypes) | ||
if passed != num_tests: | ||
print(f"failed. {passed}/{num_tests}") | ||
exit(-1) | ||
else: | ||
print(f"PASSED! {passed}/{num_tests}") | ||
exit(0) |