MSc project: Use Large Artificial Neural Nets to Extract Semantic Signals for Long-term Sequential Forecasting
creater: Yishan Liu
- this is a collection of the materials I used for my MSc proejct on long term financial time series forecasting with deep learning.
- this collection includes the data I used, my paper, and my python implementaiton.
- I am looking forward for your feedbacks, thank you!
- the 5 RNN encoder-decoders are:
- GRU encoder-decoder
- bidirectional GRU encoder-decoder
- CNN-GRU encoder-decoder
- convLSTM encoder-decoder
- bidirectional convLSTM encoder-decoder
- the 5 non encoder-decoders are:
- GRU
- bidirectional GRU
- CNN-GRU
- convLSTM
- bidirectoinal convLSTM
-
evaluation metrics:
- train mse: 0.0361340157687664
- test mse: 0.017722204327583313
- train rmse: 0.17656706273555756
- test rmse: 0.12243817746639252
-
other statistics - means:
- training data mean: 8.841544827586207
- train prediction mean: 8.791829
- testing data mean: 8.717213409961685
- test prediction mean: 8.674898
-
other statistics - standard deviations:
- training data standard deviation: 0.17639548961572413
- train prediction standard deviation: 0.0813758
- testing data standard deviation: 0.14175250034034664
- test prediction standard deviation: 0.06592484