Skip to content

YUE-FAN/FixMatch-PyTorch

Repository files navigation

FixMatch-PyTorch-Reproduction

This repo contains a PyTorch implementation of FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. The official Tensorflow implementation is here.

This code reproduces CIFAR-10 and CIFAR-100 RA results in the paper.

Usage

Train the model on CIFAR-10 with 40 labels:

python cifar_fixmatch_reproduce.py -a wideresnetleaky --k 2 --n 28 -d cifar10 -j 4 --epochs 1024 --train_batch 64 --lr 0.03 --init_data 4 --val_data 1 --mu 7 --lambda_u 1 --threshold 0.95 --n_imgs_per_epoch 65536 --checkpoint YOUR_PATH --manualSeed 1 --datasetSeed 1 --use_ema --ema_decay 0.999 --wd 0.0005 --gpu-id 0

Train the model on CIFAR-100 with 400 labels (the model used on CIFAR-100 is larger, see here):

python cifar_fixmatch_reproduce.py -a wideresnetleaky --k 8 --n 28 -d cifar100 -j 4 --epochs 1024 --train_batch 64 --lr 0.03 --init_data 4 --val_data 1 --mu 7 --lambda_u 1 --threshold 0.95 --n_imgs_per_epoch 65536 --checkpoint YOUR_PATH --manualSeed 1 --datasetSeed 1 --use_ema --ema_decay 0.999 --wd 0.0005 --gpu-id 0

Results

CIFAR-10 error rate

#Labels 40 250 4000
Paper (RA) 13.81 ± 3.37 5.07 ± 0.65 4.26 ± 0.05
This code 6.19 4.32 3.96

CIFAR-100 error rate

#Labels 400 2500 10000
Paper (RA) 48.85 ± 1.75 28.29 ± 0.11 22.60 ± 0.12
This code 44.18 26.37 21.37

* Results of this code were evaluated on 1 run.

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages