Skip to content

YUE-FAN/fastai_imagenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fastai_imagenet

python -m torch.distributed.launch --nproc_per_node={num_gpus} {script_name}

python cifar_distri.py -a resnet50 --layer 99 --dataset cifar10 --depth 110 --epochs 5 --schedule 2 3 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/del/dell --multiprocessing-distributed --dist-url tcp://127.0.0.1:8888

python cifar.py -a vgg16 --dataset cifar10 --depth 110 --epochs 5 --schedule 2 3 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/del/dell --gpu-id 0

python main_torch.py -a resnet50 --layer 99 --dataset /datasets/imagenet/ --epochs 100 --schedule 30 60 --gamma 0.1 --wd 1e-4 --checkpoint /trained-models/imagenet/resnet50_torch/ --multiprocessing-distributed --dist-url tcp://127.0.0.1:8888 --ngpus_per_node 8 --lr 0.6 --workers 32

python main_torch.py -a resnet50_1x1 --layer 35 --dataset /BS/database11/ILSVRC2012/ --epochs 90 --schedule 30 60 --train-batch 256 --checkpoint /BS/yfan/work/trained-models/dconv/checkpoints/imagenet/resnet501x1_90_lr0.1_bs256/resnet501x1_3542_90 --multiprocessing-distributed --ngpus_per_node 3 --workers 32

To Yongqin:

Requirement: Python 3.6.7 numpy 1.16.2 scipy 1.2.1 Pillow 5.4.1 torch 1.0.0 and corresponding torchvision

You may create a conda env and run a tmux session. Inside the session, just "bash vgg161d.sh" or "bash d1_resnet50.sh"

Inside the .sh files, each line trains one independent model. You can divide those lines into several .sh files so that they can be run in parallel. Please remember to specify the --dataset to the location of imagnet dataset and --checkpoint to the location where you would like to store the model (the folder will be create it automatically).

To Dingfan:

Requirement: Python 3.6.7 numpy 1.16.3 scipy 1.3.0 Pillow 6.0.0 torch 1.0.0 and corresponding torchvision

Train ResNet50:

CUDA_VISIBLE_DEVICES=0,1,2 python main_torch.py -a resnet50_1x1lap --layer 99 --dataset xxx --epochs 90 --schedule 30 60 --train-batch 256 --checkpoint xxx --multiprocessing-distributed --ngpus_per_node 3 --workers 16

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published