Skip to content

Commit

Permalink
nnLpNorm
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Aug 29, 2024
1 parent c9a7380 commit 96efe64
Show file tree
Hide file tree
Showing 24 changed files with 1,617 additions and 1,449 deletions.
6 changes: 5 additions & 1 deletion LeanAPAP.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import LeanAPAP.Extras.BSG
import LeanAPAP.FiniteField.Basic
import LeanAPAP.Mathlib.Algebra.Algebra.Rat
import LeanAPAP.Mathlib.Algebra.Group.Action.Defs
import LeanAPAP.Mathlib.Algebra.Group.AddChar
import LeanAPAP.Mathlib.Algebra.Order.Group.Unbundled.Basic
Expand Down Expand Up @@ -44,9 +45,12 @@ import LeanAPAP.Prereqs.Function.Indicator.Basic
import LeanAPAP.Prereqs.Function.Indicator.Defs
import LeanAPAP.Prereqs.Function.Translate
import LeanAPAP.Prereqs.LargeSpec
import LeanAPAP.Prereqs.LpNorm.Compact
import LeanAPAP.Prereqs.LpNorm.Compact.Defs
import LeanAPAP.Prereqs.LpNorm.Compact.Inner
import LeanAPAP.Prereqs.LpNorm.Discrete.Basic
import LeanAPAP.Prereqs.LpNorm.Discrete.Defs
import LeanAPAP.Prereqs.LpNorm.Discrete.Inner
import LeanAPAP.Prereqs.LpNorm.Weighted
import LeanAPAP.Prereqs.MarcinkiewiczZygmund
import LeanAPAP.Prereqs.NNLpNorm
import LeanAPAP.Prereqs.Rudin
22 changes: 11 additions & 11 deletions LeanAPAP/FiniteField/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -31,22 +31,22 @@ lemma global_dichotomy (hA : A.Nonempty) (hγC : γ ≤ C.dens) (hγ : 0 < γ)
_ ≤ _ := div_le_div_of_nonneg_right hAC (card G).cast_nonneg
_ = |⟪balance (μ A) ∗ balance (μ A), μ C⟫_[ℝ]| := ?_
_ ≤ ‖balance (μ_[ℝ] A) ∗ balance (μ A)‖_[p] * ‖μ_[ℝ] C‖_[NNReal.conjExponent p] :=
abs_l2Inner_le_lpNorm_mul_lpNorm hp'' _ _
abs_dL2Inner_le_dLpNorm_mul_dLpNorm hp'' _ _
_ ≤ ‖balance (μ_[ℝ] A) ○ balance (μ A)‖_[p] * (card G ^ (-(p : ℝ)⁻¹) * γ ^ (-(p : ℝ)⁻¹)) :=
mul_le_mul (lpNorm_conv_le_lpNorm_dconv' (by positivity) (even_two_mul _) _) ?_
mul_le_mul (dLpNorm_conv_le_dLpNorm_dconv' (by positivity) (even_two_mul _) _) ?_
(by positivity) (by positivity)
_ = ‖balance (μ_[ℝ] A) ○ balance (μ A)‖_[↑(2 * ⌈γ.curlog⌉₊), const _ (card G)⁻¹] *
γ ^ (-(p : ℝ)⁻¹) := ?_
_ ≤ _ := mul_le_mul_of_nonneg_left ?_ $ by positivity
· rw [← balance_conv, balance, l2Inner_sub_left, l2Inner_const_left, expect_conv, sum_mu ℝ hA,
· rw [← balance_conv, balance, dL2Inner_sub_left, dL2Inner_const_left, expect_conv, sum_mu ℝ hA,
expect_mu ℝ hA, sum_mu ℝ hC, conj_trivial, one_mul, mul_one, ← mul_inv_cancel₀, ← mul_sub,
abs_mul, abs_of_nonneg, mul_div_cancel_left₀] <;> positivity
· rw [lpNorm_mu hp''.symm.one_le hC, hp''.symm.coe.inv_sub_one, NNReal.coe_natCast, ← mul_rpow]
rw [nnratCast_dens, le_div_iff, mul_comm] at hγC
· rw [dLpNorm_mu hp''.symm.one_le hC, hp''.symm.coe.inv_sub_one, NNReal.coe_natCast, ← mul_rpow]
rw [nnratCast_dens, le_div_iff, mul_comm] at hγC
refine rpow_le_rpow_of_nonpos ?_ hγC (neg_nonpos.2 ?_)
all_goals positivity
· simp_rw [Nat.cast_mul, Nat.cast_two, p]
rw [wlpNorm_const_right, mul_assoc, mul_left_comm, NNReal.coe_inv, inv_rpow, rpow_neg]
rw [wLpNorm_const_right, mul_assoc, mul_left_comm, NNReal.coe_inv, inv_rpow, rpow_neg]
push_cast
any_goals norm_cast; rw [Nat.succ_le_iff]
rfl
Expand Down Expand Up @@ -86,7 +86,7 @@ lemma ap_in_ff (hS : S.Nonempty) (hα₀ : 0 < α) (hε₀ : 0 < ε) (hε₁ :
calc
_ = ⟪μ V', μ A₁ ∗ μ A₂ ○ 𝟭 S⟫_[ℝ] := by
sorry
-- rw [conv_assoc, conv_l2Inner, ← conj_l2Inner]
-- rw [conv_assoc, conv_dL2Inner, ← conj_dL2Inner]
-- simp

_ = _ := sorry
Expand All @@ -103,7 +103,7 @@ lemma di_in_ff (hq₃ : 3 ≤ q) (hq : q.Prime) (hε₀ : 0 < ε) (hε₁ : ε <
refine ⟨⊤, univ, _⟩
rw [AffineSubspace.direction_top]
simp only [AffineSubspace.top_coe, coe_univ, eq_self_iff_true, finrank_top, tsub_self,
Nat.cast_zero, indicate_empty, zero_mul, lpNorm_zero, true_and_iff,
Nat.cast_zero, indicate_empty, zero_mul, nnLpNorm_zero, true_and_iff,
Finset.card_empty, zero_div] at hαA ⊢
exact ⟨by positivity, mul_nonpos_of_nonneg_of_nonpos (by positivity) hαA⟩
have hγ₁ : γ ≤ 1 := hγC.trans (by norm_cast; exact dens_le_one)
Expand All @@ -118,13 +118,13 @@ lemma di_in_ff (hq₃ : 3 ≤ q) (hq : q.Prime) (hε₀ : 0 < ε) (hε₁ : ε <
simp [smul_dconv, dconv_smul, smul_smul]
· simp [card_univ, show (card G : ℂ) ≠ 0 by sorry]
· simp only [comp_const, Nonneg.coe_inv, NNReal.coe_natCast]
rw [← ENNReal.coe_one, lpNorm_const one_ne_zero]
rw [← ENNReal.coe_one, dLpNorm_const one_ne_zero]
sorry
-- simp only [Nonneg.coe_one, inv_one, rpow_one, norm_inv, norm_coe_nat,
-- mul_inv_cancel₀ (show (card G : ℝ) ≠ 0 by positivity)]
· have hγ' : (1 : ℝ≥0) ≤ 2 * ⌈γ.curlog⌉₊ := sorry
sorry
-- simpa [wlpNorm_nsmul hγ', ← nsmul_eq_mul, div_le_iff' (show (0 : ℝ) < card G by positivity),
-- simpa [wLpNorm_nsmul hγ', ← nsmul_eq_mul, div_le_iff' (show (0 : ℝ) < card G by positivity),
-- ← div_div, *] using global_dichotomy hA hγC hγ hAC
sorry

Expand Down Expand Up @@ -207,7 +207,7 @@ theorem ff (hq₃ : 3 ≤ q) (hq : q.Prime) {A : Finset G} (hA₀ : A.Nonempty)
_ ≤ 2 := by norm_num
· positivity
all_goals positivity
rw [hB.l2Inner_mu_conv_mu_mu_two_smul_mu] at hBV
rw [hB.dL2Inner_mu_conv_mu_mu_two_smul_mu] at hBV
suffices h : (q ^ (n - 65 * curlog α ^ 9) : ℝ) ≤ q ^ (n / 2) by
rw [rpow_le_rpow_left_iff ‹_›, sub_le_comm, sub_half, div_le_iff₀' zero_lt_two, ← mul_assoc] at h
norm_num at h
Expand Down
30 changes: 30 additions & 0 deletions LeanAPAP/Mathlib/Algebra/Algebra/Rat.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import Mathlib.Algebra.Algebra.Rat
import Mathlib.Algebra.Module.Basic

variable {α β : Type*}

instance [Monoid α] [AddCommMonoid β] [Module ℚ≥0 β] [DistribMulAction α β] :
SMulCommClass ℚ≥0 α β where
smul_comm q a b := by
rw [← q.num_div_den, div_eq_mul_inv]
simp_rw [mul_smul, inv_natCast_smul_comm, Nat.cast_smul_eq_nsmul]
rw [smul_comm a q.num]

instance [Monoid α] [AddCommMonoid β] [Module ℚ≥0 β] [DistribMulAction α β] :
SMulCommClass α ℚ≥0 β := .symm ..

instance [Semiring α] [Module ℚ≥0 α] : IsScalarTower ℚ≥0 α α where
smul_assoc q a b := sorry

instance [Monoid α] [AddCommGroup β] [Module ℚ β] [DistribMulAction α β] :
SMulCommClass ℚ α β where
smul_comm q a b := by
rw [← q.num_div_den, div_eq_mul_inv]
simp_rw [mul_smul, inv_natCast_smul_comm, Int.cast_smul_eq_zsmul]
rw [smul_comm a q.num]

instance [Monoid α] [AddCommGroup β] [Module ℚ β] [DistribMulAction α β] : SMulCommClass α ℚ β :=
.symm ..

instance [Ring α] [Module ℚ α] : IsScalarTower ℚ α α where
smul_assoc q a b := sorry
73 changes: 38 additions & 35 deletions LeanAPAP/Physics/AlmostPeriodicity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ import LeanAPAP.Prereqs.MarcinkiewiczZygmund
# Almost-periodicity
-/

open MeasureTheory
open scoped Pointwise Combinatorics.Additive

namespace Finset
Expand Down Expand Up @@ -85,7 +86,8 @@ end
open Finset Real
open scoped BigOperators Pointwise NNReal ENNReal

variable {G : Type*} [Fintype G] {A S : Finset G} {f : G → ℂ} {ε K : ℝ} {k m : ℕ}
variable {G : Type*} [Fintype G] [MeasurableSpace G] [DiscreteMeasurableSpace G] {A S : Finset G}
{f : G → ℂ} {ε K : ℝ} {k m : ℕ}

lemma lemma28_end (hε : 0 < ε) (hm : 1 ≤ m) (hk : 64 * m / ε ^ 2 ≤ k) :
(8 * m) ^ m * k ^ (m - 1) * A.card ^ k * k * (2 * ‖f‖_[2 * m]) ^ (2 * m) ≤
Expand All @@ -95,7 +97,7 @@ lemma lemma28_end (hε : 0 < ε) (hm : 1 ≤ m) (hk : 64 * m / ε ^ 2 ≤ k) :
refine mul_ne_zero two_pos.ne' ?_
rw [← pos_iff_ne_zero, ← Nat.succ_le_iff]
exact hm
rw [mul_pow (2 : ℝ), ← hmeq, ← lpNorm_pow_eq_sum hm' f, ← mul_assoc, ← mul_assoc,
rw [mul_pow (2 : ℝ), ← hmeq, ← dLpNorm_pow_eq_sum_norm hm' f, ← mul_assoc, ← mul_assoc,
mul_right_comm _ (A.card ^ k : ℝ), mul_right_comm _ (A.card ^ k : ℝ),
mul_right_comm _ (A.card ^ k : ℝ)]
gcongr ?_ * _ * _
Expand All @@ -119,6 +121,22 @@ variable [DecidableEq G] [AddCommGroup G]

local notation:70 s:70 " ^^ " n:71 => Fintype.piFinset fun _ : Fin n ↦ s

lemma lemma28_part_one (hm : 1 ≤ m) (x : G) :
∑ a in A ^^ k, ‖∑ i, f (x - a i) - (k • (mu A ∗ f)) x‖ ^ (2 * m) ≤
(8 * m) ^ m * k ^ (m - 1) *
∑ a in A ^^ k, ∑ i, ‖f (x - a i) - (mu A ∗ f) x‖ ^ (2 * m) := by
let f' : G → ℂ := fun a ↦ f (x - a) - (mu A ∗ f) x
refine (RCLike.marcinkiewicz_zygmund (by linarith only [hm]) f' ?_).trans_eq' ?_
· intro i
rw [Fintype.sum_piFinset_apply, sum_sub_distrib]
simp only [sub_eq_zero, sum_const, indicate_apply]
rw [← Pi.smul_apply (card A), ← smul_conv, card_smul_mu, conv_eq_sum_sub']
simp only [boole_mul, indicate_apply]
rw [← sum_filter, filter_mem_eq_inter, univ_inter, sub_self, smul_zero]
congr with a : 1
simp only [sum_sub_distrib, Pi.smul_apply, sum_const, card_fin]
variable [DecidableEq G] [AddCommGroup G]

namespace AlmostPeriodicity

def LProp (k m : ℕ) (ε : ℝ) (f : G → ℂ) (A : Finset G) (a : Fin k → G) : Prop :=
Expand All @@ -143,21 +161,6 @@ lemma lemma28_markov (hε : 0 < ε) (hm : 1 ≤ m)
congr with a : 3
refine pow_le_pow_iff_left ?_ ?_ ?_ <;> positivity

lemma lemma28_part_one (hm : 1 ≤ m) (x : G) :
∑ a in A ^^ k, ‖∑ i, f (x - a i) - (k • (mu A ∗ f)) x‖ ^ (2 * m) ≤
(8 * m) ^ m * k ^ (m - 1) *
∑ a in A ^^ k, ∑ i, ‖f (x - a i) - (mu A ∗ f) x‖ ^ (2 * m) := by
let f' : G → ℂ := fun a ↦ f (x - a) - (mu A ∗ f) x
refine (RCLike.marcinkiewicz_zygmund (by linarith only [hm]) f' ?_).trans_eq' ?_
· intro i
rw [Fintype.sum_piFinset_apply, sum_sub_distrib]
simp only [sub_eq_zero, sum_const, indicate_apply]
rw [← Pi.smul_apply (card A), ← smul_conv, card_smul_mu, conv_eq_sum_sub']
simp only [boole_mul, indicate_apply]
rw [← sum_filter, filter_mem_eq_inter, univ_inter, sub_self, smul_zero]
congr with a : 1
simp only [sum_sub_distrib, Pi.smul_apply, sum_const, card_fin]

lemma lemma28_part_two (hm : 1 ≤ m) (hA : A.Nonempty) :
(8 * m) ^ m * k ^ (m - 1) * ∑ a in A ^^ k, ∑ i, ‖τ (a i) f - mu A ∗ f‖_[2 * m] ^ (2 * m) ≤
(8 * m) ^ m * k ^ (m - 1) * ∑ a in A ^^ k, ∑ i : Fin k, (2 * ‖f‖_[2 * m]) ^ (2 * m) := by
Expand All @@ -166,16 +169,16 @@ lemma lemma28_part_two (hm : 1 ≤ m) (hA : A.Nonempty) :
have hm' : 1 < 2 * m := (Nat.mul_le_mul_left 2 hm).trans_lt' $ by norm_num1
have hm'' : (1 : ℝ≥0∞) ≤ 2 * m := by rw [← hmeq, Nat.one_le_cast]; exact hm'.le
gcongr
refine (lpNorm_sub_le hm'' _ _).trans ?_
rw [lpNorm_translate, two_mul ‖f‖_[2 * m], add_le_add_iff_left]
refine (dLpNorm_sub_le hm'' _ _).trans ?_
rw [dLpNorm_translate, two_mul ‖f‖_[2 * m], add_le_add_iff_left]
have hmeq' : ((2 * m : ℝ≥0) : ℝ≥0∞) = 2 * m := by
rw [ENNReal.coe_mul, ENNReal.coe_two, ENNReal.coe_natCast]
have : (1 : ℝ≥0) < 2 * m := by
rw [← Nat.cast_two, ← Nat.cast_mul, Nat.one_lt_cast]
exact hm'
rw [← hmeq', conv_comm]
refine (lpNorm_conv_le this.le _ _).trans ?_
rw [l1Norm_mu hA, mul_one]
refine (dLpNorm_conv_le this.le _ _).trans ?_
rw [dL1Norm_mu hA, mul_one]

lemma lemma28 (hε : 0 < ε) (hm : 1 ≤ m) (hk : (64 : ℝ) * m / ε ^ 2 ≤ k) :
(A.card ^ k : ℝ) / 2 ≤ (l k m ε f A).card := by
Expand All @@ -191,7 +194,7 @@ lemma lemma28 (hε : 0 < ε) (hm : 1 ≤ m) (hk : (64 : ℝ) * m / ε ^ 2 ≤ k)
have hm' : 2 * m ≠ 0 := by linarith
have hmeq : ((2 * m : ℕ) : ℝ≥0∞) = 2 * m := by rw [Nat.cast_mul, Nat.cast_two]
rw [← hmeq, mul_pow]
simp only [lpNorm_pow_eq_sum hm']
simp only [dLpNorm_pow_eq_sum_nnnorm hm']
rw [sum_comm]
have : ∀ x : G, ∑ a in A ^^ k,
‖∑ i, f (x - a i) - (k • (mu A ∗ f)) x‖ ^ (2 * m) ≤
Expand All @@ -203,7 +206,7 @@ lemma lemma28 (hε : 0 < ε) (hm : 1 ≤ m) (hk : (64 : ℝ) * m / ε ^ 2 ≤ k)
simp only [@sum_comm _ _ G]
have (a : Fin k → G) (i : Fin k) :
∑ x, ‖f (x - a i) - (mu A ∗ f) x‖ ^ (2 * m) = ‖τ (a i) f - mu A ∗ f‖_[2 * m] ^ (2 * m) := by
rw [← hmeq, lpNorm_pow_eq_sum hm']
rw [← hmeq, dLpNorm_pow_eq_sum_nnnorm hm']
simp only [Pi.sub_apply, translate_apply]
simp only [this]
have :
Expand Down Expand Up @@ -234,18 +237,18 @@ lemma just_the_triangle_inequality {t : G} {a : Fin k → G} (ha : a ∈ l k m
refine Finset.sum_congr rfl fun j _ ↦ ?_
rw [sub_right_comm]
have h₄₁ : ‖τ t f₁ - k • (mu A ∗ f)‖_[2 * m] = ‖τ (-t) (τ t f₁ - k • (mu A ∗ f))‖_[2 * m] := by
rw [lpNorm_translate]
rw [dLpNorm_translate]
have h₄ : ‖τ t f₁ - k • (mu A ∗ f)‖_[2 * m] = ‖f₁ - τ (-t) (k • (mu A ∗ f))‖_[2 * m] := by
rw [h₄₁, translate_sub_right, translate_translate]
simp
have h₅₁ : ‖τ (-t) (k • (mu A ∗ f)) - f₁‖_[2 * m] ≤ k * ε * ‖f‖_[2 * m] := by
rwa [lpNorm_sub_comm, ← h₄, ← h₃]
rwa [dLpNorm_sub_comm, ← h₄, ← h₃]
have : (0 : ℝ) < k := by positivity
refine le_of_mul_le_mul_left ?_ this
rw [← nsmul_eq_mul, ← lpNorm_nsmul hp _ (_ - mu A ∗ f), nsmul_sub, ←
rw [← nsmul_eq_mul, ← dLpNorm_nsmul hp _ (_ - mu A ∗ f), nsmul_sub, ←
translate_smul_right (-t) (mu A ∗ f) k, mul_assoc, mul_left_comm, two_mul ((k : ℝ) * _), ←
mul_assoc]
exact (lpNorm_sub_le_lpNorm_sub_add_lpNorm_sub hp _ _).trans (add_le_add h₅₁ h₁)
exact (dLpNorm_sub_le_dLpNorm_sub_add_dLpNorm_sub hp _ _).trans (add_le_add h₅₁ h₁)

lemma big_shifts_step2 (L : Finset (Fin k → G)) (hk : k ≠ 0) :
(∑ x in L + S.piDiag (Fin k), ∑ l in L, ∑ s in S.piDiag (Fin k), ite (l + s = x) (1 : ℝ) 0) ^ 2
Expand Down Expand Up @@ -381,7 +384,7 @@ lemma almost_periodicity (ε : ℝ) (hε : 0 < ε) (hε' : ε ≤ 1) (m : ℕ) (
refine (mul_le_mul_of_nonneg_right this (Nat.cast_nonneg _)).trans ?_
rw [one_mul, Nat.cast_le]
exact card_le_univ _
simp only [mu_empty, zero_conv, translate_zero_right, sub_self, lpNorm_zero]
simp only [mu_empty, zero_conv, translate_zero_right, sub_self, nnLpNorm_zero]
positivity
let k := ⌈(64 : ℝ) * m / (ε / 2) ^ 2⌉₊
have hk : k ≠ 0 := by positivity
Expand Down Expand Up @@ -438,19 +441,19 @@ theorem linfty_almost_periodicity (ε : ℝ) (hε₀ : 0 < ε) (hε₁ : ε ≤
= (F ∗ μ C) x := by simp [sub_conv, F]
_ = ∑ y, F y * μ C (x - y) := conv_eq_sum_sub' ..
_ = ∑ y, F y * μ (x +ᵥ -C) y := by simp [neg_add_eq_sub]
rw [linftyNorm_eq_ciSup]
rw [dLinftyNorm_eq_iSup]
refine ciSup_le fun x ↦ ?_
calc
‖(τ t (μ A ∗ 𝟭 B ∗ μ C) - μ A ∗ 𝟭 B ∗ μ C : G → ℂ) x‖
= ‖∑ y, F y * μ (x +ᵥ -C) y‖ := by rw [this]
_ ≤ ∑ y, ‖F y * μ (x +ᵥ -C) y‖ := norm_sum_le _ _
_ = ‖F * μ (x +ᵥ -C)‖_[1] := by rw [l1Norm_eq_sum]; rfl
_ ≤ ‖F‖_[M] * ‖μ_[ℂ] (x +ᵥ -C)‖_[NNReal.conjExponent M] := l1Norm_mul_le hM _ _
_ = ‖F * μ (x +ᵥ -C)‖_[1] := by rw [dL1Norm_eq_sum_nnnorm]; rfl
_ ≤ ‖F‖_[M] * ‖μ_[ℂ] (x +ᵥ -C)‖_[NNReal.conjExponent M] := dL1Norm_mul_le hM _ _
_ ≤ ε / exp 1 * B.card ^ (M : ℝ)⁻¹ * ‖μ_[ℂ] (x +ᵥ -C)‖_[NNReal.conjExponent M] := by
gcongr
simpa only [← ENNReal.coe_natCast, lpNorm_indicate hM₀] using hT _ ht
simpa only [← ENNReal.coe_natCast, dLpNorm_indicate hM₀] using hT _ ht
_ = ε * ((C.card / B.card) ^ (-(M : ℝ)⁻¹) / exp 1) := by
rw [← mul_comm_div, lpNorm_mu hM.symm.one_le hC.neg.vadd_finset, card_vadd_finset,
rw [← mul_comm_div, dLpNorm_mu hM.symm.one_le hC.neg.vadd_finset, card_vadd_finset,
card_neg, hM.symm.coe.inv_sub_one, div_rpow, mul_assoc, NNReal.coe_natCast,
rpow_neg, rpow_neg, ← div_eq_mul_inv, inv_div_inv] <;> positivity
_ ≤ ε := mul_le_of_le_one_right (by positivity) $ (div_le_one $ by positivity).2 ?_
Expand Down Expand Up @@ -482,12 +485,12 @@ theorem linfty_almost_periodicity_boosted (ε : ℝ) (hε₀ : 0 < ε) (hε₁ :
‖μ T ∗^ k ∗ F - F‖_[∞]
= ‖𝔼 a ∈ T ^^ k, (τ (∑ i, a i) F - F)‖_[∞] := by
rw [mu_iterConv_conv, expect_sub_distrib, expect_const hT'.piFinset_const]
_ ≤ 𝔼 a ∈ T ^^ k, ‖τ (∑ i, a i) F - F‖_[∞] := lpNorm_expect_le le_top _ _
_ ≤ 𝔼 a ∈ T ^^ k, ‖τ (∑ i, a i) F - F‖_[∞] := dLpNorm_expect_le le_top _ _
_ ≤ 𝔼 _a ∈ T ^^ k, ε := expect_le_expect fun x hx ↦ ?_
_ = ε := by rw [expect_const hT'.piFinset_const]
calc
‖τ (∑ i, x i) F - F‖_[⊤]
_ ≤ ∑ i, ‖τ (x i) F - F‖_[⊤] := lpNorm_translate_sum_sub_le le_top _ _ _
_ ≤ ∑ i, ‖τ (x i) F - F‖_[⊤] := dLpNorm_translate_sum_sub_le le_top _ _ _
_ ≤ ∑ _i, ε / k := sum_le_sum fun i _ ↦ hT _ $ Fintype.mem_piFinset.1 hx _
_ = ε := by simp only [sum_const, card_fin, nsmul_eq_mul]; rw [mul_div_cancel₀]; positivity

Expand Down
Loading

0 comments on commit 96efe64

Please sign in to comment.