Skip to content

Commit

Permalink
Fill in API sorries for eLpNorm
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Nov 15, 2024
1 parent 7765a06 commit 9cd36cd
Show file tree
Hide file tree
Showing 2 changed files with 22 additions and 9 deletions.
17 changes: 8 additions & 9 deletions LeanAPAP/Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import Mathlib.Data.Fintype.Order
import Mathlib.MeasureTheory.Function.LpSeminorm.Basic
import LeanAPAP.Mathlib.Order.LiminfLimsup

noncomputable section

Expand All @@ -21,19 +23,16 @@ lemma eLpNorm_lt_top_of_finite [Finite α] [IsFiniteMeasure μ] : eLpNorm f p μ
· simp
obtain rfl | hp := eq_or_ne p ∞
· simp only [eLpNorm_exponent_top, eLpNormEssSup_lt_top_iff_isBoundedUnder]
sorry
exact .le_of_finite
rw [eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top hp₀ hp]
refine IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal μ ?_
sorry
simp_rw [← ENNReal.coe_rpow_of_nonneg _ ENNReal.toReal_nonneg]
norm_cast
exact Finite.exists_le _

@[simp] lemma Memℒp.of_discrete [DiscreteMeasurableSpace α] [Finite α] [IsFiniteMeasure μ] :
Memℒp f p μ := by
refine ⟨.of_finite, ?_⟩
rw [eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top]
refine IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal μ ?f_bdd
sorry
sorry
sorry
Memℒp f p μ :=
let ⟨C, hC⟩ := Finite.exists_le (‖f ·‖₊); .of_bound .of_finite C <| .of_forall hC

@[simp] lemma eLpNorm_of_isEmpty [IsEmpty α] (f : α → E) (p : ℝ≥0∞) : eLpNorm f p μ = 0 := by
simp [Subsingleton.elim f 0]
Expand Down
14 changes: 14 additions & 0 deletions LeanAPAP/Mathlib/Order/LiminfLimsup.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import Mathlib.Order.LiminfLimsup

namespace Filter
variable {α β γ ι ι' : Type*}

lemma IsBoundedUnder.le_of_finite [Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)] [Finite β]
{f : Filter β} {u : β → α} : IsBoundedUnder (· ≤ ·) f u :=
(Set.toFinite _).bddAbove.isBoundedUnder univ_mem

lemma IsBoundedUnder.ge_of_finite [Nonempty α] [Preorder α] [IsDirected α (· ≥ ·)] [Finite β]
{f : Filter β} {u : β → α} : IsBoundedUnder (· ≥ ·) f u :=
(Set.toFinite _).bddBelow.isBoundedUnder univ_mem

end Filter

0 comments on commit 9cd36cd

Please sign in to comment.