-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bc3d7d5
commit 0291d97
Showing
2 changed files
with
294 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
\documentclass{article} | ||
|
||
% preamble | ||
\def\npart{III} | ||
\def\nyear{2023} | ||
\def\nterm{Michaelmas} | ||
\def\nlecturer{Dr Andr\'as Zs\'ak} | ||
\def\ncourse{Functional Analysis} | ||
\def\draft{Incomplete} | ||
|
||
\usepackage{mathrsfs} | ||
\usepackage{imakeidx} | ||
\usepackage{marginnote} | ||
\usepackage{mathdots} | ||
\usepackage{tabularx} | ||
\usepackage{ifthen} | ||
|
||
\input{header} | ||
\swapnumbers | ||
\reversemarginpar | ||
|
||
\usetikzlibrary{positioning, decorations.pathmorphing, decorations.text, calc, backgrounds, fadings} | ||
\tikzset{node/.style = {circle,draw,inner sep=0.8mm}} | ||
|
||
\makeindex[intoc] | ||
|
||
\setcounter{section}{-1} | ||
|
||
% and here we go! | ||
\begin{document} | ||
\maketitle | ||
|
||
\tableofcontents | ||
|
||
\clearpage | ||
|
||
\section{Introduction} | ||
|
||
\subsection*{Prerequisites} | ||
|
||
\begin{itemize} | ||
\item some basic functional analysis | ||
\item a bit of measure theory | ||
\item a bit of complex analysis | ||
\end{itemize} | ||
|
||
\subsection*{Books} | ||
|
||
Books relevant to the course are: | ||
\begin{itemize} | ||
\item Bollob\'as, \textit{Linear Analysis} | ||
\item Murphy, \textit{$C^*$-algebras} | ||
\item Rudin | ||
\item Graham-Allan | ||
\end{itemize} | ||
|
||
\subsection*{Notation} | ||
|
||
We will use $\K$ to mean "either $\R$ or $\C$". | ||
|
||
For $X$ a normed space, we define | ||
$$B_X = \{x \in X | \norm x \le 1\}$$ | ||
$$S_X = \{x \in X | \norm x = 1\}$$ | ||
|
||
For $X, Y$ normed spaces, we write $X \sim Y$ if $X, Y$ are isomorphic, ie there | ||
exists a linear bijection $T : X \mor Y$ such that $T$ and $T^{-1}$ are continuous. We write $X \cong Y$ if $X, Y$ are isometrically isomorphic, ie there exists a surjective linear map $T : X \mor Y$ such that $\norm{T x} = \norm x$ for all $x$. | ||
|
||
\clearpage | ||
|
||
\section{Hahn-Banach extension theorems} | ||
|
||
\newlec | ||
|
||
Let $X$ be a normed space. The {\bf dual space} of $X$ is the space $X^*$ of | ||
bounded linear functionals on $X$. | ||
$X^*$ is always a Banach space in the operator norm: for $f \in X^*$, | ||
$$\norm f = \sup_{x \in B_X} |f(x)|$$ | ||
|
||
\begin{eg} | ||
For $1 < p, q < \infty$, $p^{-1} + q^{-1} = 1$, $\ell_p^* \cong \ell_q$. \\ | ||
We also have $\ell_1^* \cong \ell_\infty$, $c_0^* \cong \ell_1$. \\ | ||
If $H$ is a Hilbert space, then $H^* \cong H$ (the isomorphism is conjugate-linear in the complex case). | ||
\end{eg} | ||
|
||
For $x \in X, f \in X^*$, we write $\langle x, f\rangle = f(x)$. Note that | ||
$$\langle x, f\rangle = |f(x)| \le \norm f\norm x$$ | ||
|
||
\begin{defi} | ||
Let $X$ be a {\it real} vector space. A functional $p : X \mor \R$ is | ||
\begin{itemize} | ||
\item {\bf positive homogeneous} if $p(tx) = tp(x)$ for all $x \in X$, $t \ge 0$ | ||
\item {\bf subadditive} if $p(x + y) \le p(x) + p(y)$ for all $x, y \in X$ | ||
\end{itemize} | ||
\end{defi} | ||
|
||
\begin{defi} | ||
Let $P$ be a preorder, $A \subseteq P, x \in P$. We say | ||
\begin{itemize} | ||
\item $x$ is an {\bf upper bound} for $A$ if $\for a \in A, a \le x$. | ||
\item $A$ is a {\bf chain} if $\for a, b \in A, a \le b \lor b \le a$. | ||
\item $x$ is a {\bf maximal element} if $\for y \in P, x \not < y$ | ||
\end{itemize} | ||
\end{defi} | ||
|
||
\begin{fact}[Zorn's lemma] | ||
A nonempty preorder in which all nonempty chains have an upper bound has a maximal element. | ||
\end{fact} | ||
|
||
\begin{thm}[Hahn-Banach, positive homogeneous version]\label{thm:hb-positive} | ||
Let $X$ be a real vector space and $p : X \mor \R$ be positive homogeneous and subadditive. Let $Y$ be a subspace of $X$ and $g : Y \mor \R$ be linear such that $\for y \in Y, g(y) \le p(y)$. Then there exists $f : X \mor \R$ linear such that $f\restriction_Y = g$ and $\for x \in X, f(x) \le p(x)$. | ||
\end{thm} | ||
\begin{proof} | ||
Let $P$ be the set of pairs $(Z, h)$ where $Z$ is a subspace of $X$ with $Y \subseteq Z$ and $h : Z \mor \R$ linear, $h\restriction_Y = g$ and $\for z \in Z, h(z) \le p(z)$. $P$ is nonempty since $(Y, g) \in P$, and is partially ordered by | ||
$$(Z_1, h_1) \le (Z_2, h_2) \iff Z_1 \subseteq Z_2 \land h_2\restriction_{Z_1} = h_1$$ | ||
If $\{(Z_i, h_i) | i \in I\}$ is a chain with $I$ nonempty, then we can define | ||
$$Z := \bigcup_{i \in I} Z_i, h\restriction_{Z_i} = h_i$$ | ||
The definition of $h$ makes sense thanks to the chain assumption. $(Z, h) \in P$ is therefore an upper bound for the chain. \\ | ||
Hence find by Zorn a maximal element $(Z, h)$ of $P$. If $Z = X$, we won. So assume there is some $x \in X \ Z$. Let $W = \Span(Z \cup \{x\})$ and define $f : W \mor \R$ by | ||
$$f(z + \lambda x) = h(z) + \lambda\alpha$$ | ||
for some $\alpha \in \R$. Then $f$ is linear and $f\restriction_Z = h$. We now look for $\alpha$ such that $\for w \in W, f(w) \le p(w)$. We would then have $(W, f) \in P$ and $(Z, h) < (W, f)$, contradicting maximality of $(Z, h)$. \\ | ||
We need | ||
$$h(z) + \lambda\alpha \le p(z + \lambda x) \for z \in Z, \lambda \in \R$$ | ||
Since $p$ is positive homogeneous, this becomes | ||
\begin{align} | ||
h(z) + \alpha \le p(z + x) | ||
h(z) - \alpha \le p(z - x) | ||
\end{align} | ||
ie | ||
$$h(z) - p(z - x) \le \alpha \le p(z + x) - h(z) \for z \in Z$$ | ||
The existence of $\alpha$ now amounts to | ||
$$h(z_1) - p(z_1 - x) \le \alpha \le p(z_2 + x) - h(z_2) \for z_1, z_2 \in Z$$ | ||
But indeed | ||
$$h(z_1) + h(z_2) = h(z_1 + z_2) \le p(z_1 + z_2) \le p(z_1 - x) + p(z_2 + x)$$ | ||
\end{proof} | ||
|
||
\begin{defi} | ||
Let $X$ be a $\K$-vector space. A {\bf seminorm} on $X$ is a functional $p : X \mor \R$ such that | ||
\begin{itemize} | ||
\item $\for x \in X, p(x) \ge 0$ | ||
\item $\for x \in X, \lambda \in \K, p(\lambda x) = |\lambda| p(x)$ | ||
\item $\for x, y \in X, p(x + y) \le p(x) + p(y)$ | ||
\end{itemize} | ||
\end{defi} | ||
|
||
\begin{rmk} | ||
$$\text{norm} \implies \text{seminorm} \implies \text{positive homogeneous}$$ | ||
\end{rmk} | ||
|
||
\newlec | ||
|
||
\begin{thm}[Hahn-Banach, absolute homogeneous version]\label{thm:hb-absolute} | ||
Let $X$ be a real of complex vector space and $p$ a seminorm on $X$. Let $Y$ be a subspace of $X$, $g$ a linear functional on $Y$ such that $\for y \in Y, |g(y)| \le p(y)$. Then there exists a linear functional $f$ on $X$ such that $f\restriction_Y = g$ and $\for x \in X, |f(x)| \le p(x)$. | ||
\end{thm} | ||
\begin{proof}~\\ | ||
{\bf Real case} | ||
$$\for y \in Y, g(y) \le |g(y)| \le p(y)$$ | ||
By Theorem \ref{thm:hb-positive}, there exists $f : X \mor \R$ such that $f\restriction_Y = g$ and $\for x \in X, f(x) \le p(x)$. We also have | ||
$$\for x \in X, -f(x) = f(-x) \le p(-x) = p(x)$$ | ||
Hence $|f(x)| \le p(x)$ \\ | ||
{\bf Complex case} \\ | ||
$\Re g : Y \mor \R$ is real-linear. | ||
$$\for y \in Y, |\Re g(y)| \le |g(y)| \le p(y)$$ | ||
By the real case, find $h : X \mor \R$ real-linear such that $h\restriction_Y = \Re g$ | ||
\begin{claim} | ||
There exists a unique complex-linear $f : X \mor \C$ such that $h = \Re f$. | ||
\end{claim} | ||
\begin{proof}~\\ | ||
{\bf Uniqueness} \\ | ||
If we have such $f$, then | ||
\begin{eqnarray*} | ||
f(x) | ||
& = & \Re f(x) + i\Im f(x) \\ | ||
& = & \Re f(x) - i\Re f(ix) \\ | ||
& = & h(x) - ih(ix) | ||
\end{eqnarray*} | ||
{\bf Existence} \\ | ||
Define $f(x) = h(x) - ih(ix)$. Then $f$ is real-linear and $f(ix) = if(x)$, so $f$ is complex-linear with $\Re f = h$. | ||
\end{proof} | ||
We now have $f : X \mor \C$ such that $\Re f = h$. | ||
$$\Re f\restriction_Y = h\restriction_Y = \Re g$$ | ||
So, by uniqueness, $f\restriction_Y = g$. \\ | ||
Given $x \in X$, find $\lambda$ with $|\lambda| = 1$ such that | ||
\begin{eqnarray*} | ||
|f(x)| | ||
& = & \lambda f(x) \\ | ||
& = & f(\lambda x) \\ | ||
& = & \Re f(\lambda x) \\ | ||
& = & h(\lambda x) \\ | ||
& \le & p(\lambda x) \\ | ||
& = & p(x) | ||
\end{eqnarray*} | ||
\end{proof} | ||
|
||
\begin{rmk} | ||
For a complex vector space $X$, if we write $X_\R$ for $X$ considered as a real vector space, the above proof shows that | ||
$$\Re : (X^*)_\R \mor X_\R^*$$ | ||
is an isometric isomorphism. | ||
\end{rmk} | ||
|
||
\begin{cor}\label{cor:hb-point} | ||
Let $X$ be a $\K$-vector space, $p$ a seminorm on $X$, $x_0 \in X$. Then there exists a linear functional $f$ on $X$ such that $f(x_0) = p(x_0)$ and $\for x \in X, |f(x)| \le p(x)$. | ||
\end{cor} | ||
\begin{proof} | ||
Let $Y = \Span(x_0)$, | ||
\begin{eqnarray*} | ||
g : Y & \mor & \K \\ | ||
\lambda x_0 & \mapsto & \lambda p(x_0) | ||
\end{eqnarray*} | ||
We see that $\for y \in Y, g(y) \le p(y)$. Hence find by Theorem \ref{thm:hb-absolute} a linear functional $f$ on $X$ such that $f\restriction_Y = g$ and $\for x \in X, |f(x)| \le p(x)$. We check that $f(x_0) = g(x_0) = p(x_0)$. | ||
\end{proof} | ||
|
||
\begin{thm}[Hahn-Banach, existence of support functionals] | ||
Let $X$ be a real or complex normed space. Then | ||
\begin{enumerate} | ||
\item If $Y$ is a subspace of $X$ and $g \in Y^*$, then there exists $f \in X^*$ such that $f\restriction_Y = g$ and $\norm f = \norm g$. | ||
\item Given $x_0 \ne 0$, there exists $f \in S_{X^*}$ such that $f(x_0) = \norm{x_0}$. | ||
\end{enumerate} | ||
\end{thm} | ||
\begin{proof}~ | ||
\begin{enumerate} | ||
\item Let $p(x) = \norm g \norm x$. Then $p$ is a seminorm on $X$ and | ||
$$\for y \in Y, |g(y)| \le \norm g \norm y = p(y)$$ | ||
Find by Theorem \ref{thm:hb-positive} a linear functional $f$ on $X$ such that $f\restriction_Y = g$ and $\for x \in X, |f(x)| \le p(x) = \norm g \norm x$. So $\norm f \le \norm g$. Since $f\restriction_Y = g$, we also have $\norm g \le \norm f$. Hence $\norm f = \norm g$. | ||
\item Apply Corollary \ref{cor:hb-point} with $p(x) = \norm x$ to get $f \in X^*$ such that | ||
$$\for x \in X, |f(x)| \le \norm x \text{ and } f(x_0) = \norm{x_0}$$ | ||
It follows that $\norm f = 1$. | ||
\end{enumerate} | ||
\end{proof} | ||
|
||
\begin{rmks}~ | ||
\begin{itemize} | ||
\item Part 1 is a sort of linear version of Tietze's extension theorem: Given $K$ compact Hausdorff, $L \subseteq K$ closed, $g : L \mor \K$ continuous, there exists $f : K \mor \K$ such that $f\restriction_L = g$ and $\norm f_\infty = \norm g_\infty$. | ||
\item Part 2 shows that for all $x \ne y$ in $X$ there exists $f \in X^*$ such that $f(x) \ne f(y)$, namely $X^*$ {\bf separates points} of $X$. This is a sort of linear version of Urysohn: $C(K)$ separates points of $K$. | ||
\item The $f$ in part 2 is called a {\bf norming functional}, aka {\bf support functional}, for $x_0$. The existence of support functionals shows that | ||
$$x_0 = \max_{g \in B_{X^*}} \langle x_0, g\rangle$$ | ||
Assuming $X$ is a real normed space and $\norm{x_0} = 1$, we have $B_X \subseteq \{x \in X| f(x) \le 1\}$. Visually, TODO: insert tangency diagram | ||
\end{itemize} | ||
\end{rmks} | ||
|
||
\subsection{Bidual} | ||
|
||
Let $X$ be a normed space. Then $X^{**}$ is called the {\bf bidual} or {\bf second dual} of $X$. | ||
|
||
For $x \in X$, define $\hat x : X^* \mor \K$, the {\bf evaluation at $x$}, by $\hat x(f) = f(x)$. $\hat x$ is linear and $|\hat x(f)| = |f(x)| \le \norm f \norm x$, so $\hat x \in X^{**}$ and $\norm{\hat x} \le \norm x$. | ||
|
||
The map $x \mapsto \hat x : X \mor X^{**}$ is called the {\bf canonical embedding} of $X$ into $X^{**}$. | ||
|
||
\begin{thm}\label{thm:can-emb} | ||
The canonical embedding is an isometric embedding. | ||
\end{thm} | ||
\begin{proof}~\\ | ||
{\bf Linearity} | ||
\begin{eqnarray*} | ||
\widehat{x + y}(f) & = & f(x + y) = f(x) + f(y) = \hat x(f) + \hat y(f) \\ | ||
\widehat{\lambda x}(f) & = & f(\lambda x) = \lambda f(x) = \lambda \hat x(f) | ||
\end{eqnarray*} | ||
{\bf Isometry} \\ | ||
If $x \ne 0$, there exists a support functional $f$ for $x$. Then | ||
$$ \norm{\hat x} \ge |\hat x(f)| = |f(x)| = \norm x$$ | ||
\end{proof} | ||
|
||
\begin{rmks}~ | ||
\begin{itemize} | ||
\item In bracket notation, $\langle f, \hat x\rangle = \langle x, f\rangle$ | ||
\item Let $\hat X$ be the image of $X$ in $X^{**}$. Theorem \ref{thm:can-emb} says | ||
$$X \cong \hat X \subseteq X^{**}$$ | ||
We often identify $\hat X$ with $X$ and think of $X$ as living isometrically inside $X^{**}$. Note that | ||
$$X \text{ complete } \iff \hat X \text{ closed in } X^{**}$$ | ||
\item More generally, $\bar{\hat X}$ is a Banach space containing an isometric copy of $X$ as a dense subspace. We proved that normed spaces have completions! | ||
\end{itemize} | ||
\end{rmks} | ||
|
||
\begin{defi} | ||
A normed space $X$ is {\bf reflexive} if the canonical embedding $X \mor X^{**}$ is surjective. | ||
\end{defi} | ||
|
||
\begin{egs}~ | ||
\begin{itemize} | ||
\item Some reflexive spaces are Hilbert spaces, finite-dimensional spaces, $\ell_p$ and $L_p(\mu)$ for $1 < p < \infty$. | ||
\item Some non-reflexive spaces are $c_0, \ell_1, \ell_\infty, L_1[0, 1]$. | ||
\end{itemize} | ||
\end{egs} | ||
|
||
\begin{rmks}~ | ||
\begin{itemize} | ||
\item If $X$ is reflexive, then $X \cong X^{**}$, so $X$ is complete. | ||
\item There are Banach spaces $X$ such that $X \cong X^{**}$ but $X$ is not reflexive, eg {\bf James' space}. Any isomorphism to the bidual is then necessarily not the canonical embedding. | ||
\end{itemize} | ||
\end{rmks} | ||
|
||
\newlec | ||
|
||
\printindex | ||
\end{document} |