Skip to content

Commit

Permalink
Combinatorics: Lecture 12
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Nov 1, 2023
1 parent eb04910 commit 7e3d6ce
Show file tree
Hide file tree
Showing 2 changed files with 42 additions and 0 deletions.
Binary file modified combinatorics.pdf
Binary file not shown.
42 changes: 42 additions & 0 deletions combinatorics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -640,5 +640,47 @@ \subsection{Alon's Combinatorial Nullstellensatz}

\newlec

\begin{nthm}[Alon's Combinatorial Nullstellensatz, 1995]
Let $\F$ be a field and $f \in \F[X_1, \dots, x_n]$ have degree $d = \sum_{i = 1}^n d_i$. Let $S_1, \dots, S_n \subseteq \F$ be such that $\abs{S_i} > d_i$. If $X_1^{d_1} + \dots + X_n^{d_n}$ is a monomial in the expansion of $f$, then $f$ is non-zero somewhere on $S_1 \times \dots \times S_n$.
\end{nthm}
\begin{proof}[Proof (Michałek)]
Note that
$$X^k = (X - t)(X^{k - 1} + tX^{k - 2} + \dots + t^{k - 1}) + t^k$$
Induction on $d$.
\begin{itemize}
\item Obvious for $d = 0$.
\item If $d \ge 1$, say $d_1 \ge 1$, pick $s_1 \in S_1$. Then $f = (X_1 - s_1)q(X) + r(X)$ where $\deg q = d - 1$ and $r \in \F[X_2, \dots, X_n]$. Assume that $f$ vanishes on $S_1 \times \dots \times S_n$. Then $s$ vanishes on $\{s_1\} \times S_2 \times \dots \times S_n$. But $r$ does not depend on $X_1$, so in fact $r$ vanishes on $S_1 \times \dots \times S_n$. Therefore $q$ is zero on $S_1 \setminus \{s_1\} \times \dots \times S_n$, which contradicts the induction hypothesis.
\end{itemize}
\end{proof}

\begin{nthm}[Chevalley-Warning]
Let $\F$ be a finite field and
$$f_1, \dots, f_m \in \F[X_1, \dots, X_n]$$
be such that $\sum_{i = 1}^m \deg f_i < n$. If the $f_i$ have a common zero, then they have another one.
\end{nthm}
\begin{proof}
Write $q$ the order of $\F$. Recall that for $z \in Z$
$$z^{q - 1} = \begin{cases*}
0 \text{ if } z = 0 \\
1 \text{ if } z \ne 0
\end{cases*}$$
Assume (by shifting) that the common zero of the $f_i$ is $0$. Define
$$f = \prod_{i = 1}^m (1 - f_i^{q - 1}) + \gamma \prod_{i = 1}^n \prod_{s \ne 0} (X_i - s)$$
where we choose $\gamma \ne 0$ such that $f(0) = 0$.
$$\deg f \le \max((n - 1)(q - 1), n(q - 1)) = n(q - 1)$$
and the monomial $X_1^{q - 1} \dots X_n^{q - 1}$ has coefficient $\gamma \ne 0$ in $f$. So the Combinatorial Nullstellensatz gives us $a$ such that $f(a) \ne 0$. Then $a \ne 0$ and $f_1(a) = \dots = f_m(a) = 0$.
\end{proof}

\begin{nthm}
Let $\F$ be a finite field of characteristic $p$. Let $f \in \F[X_1, \dots, X_n]$. If $\deg f < n$, then the number of zeroes of $f$ is a multiple of $p$.
\end{nthm}
\begin{proof}
Denote $q$ the order of $\F$.Write $N(f)$ the number of zeroes of $f$. We have
$$N(f) = \sum_x(1 - f(x)^{q - 1}) = - \sum_x f(x)^{q - 1}$$
Expand $f(x)^{q - 1}$ into monomials of degree at most $(n - 1)(q - 1)$.
\end{proof}

\newlec

\printindex
\end{document}

0 comments on commit 7e3d6ce

Please sign in to comment.