-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
201 lines (168 loc) · 8.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
"""
For evaluation
Extended from ADNet code by Hansen et al.
"""
import shutil
import SimpleITK as sitk
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
from models.cdfs_dsm import FewShotSeg
from dataloaders.datasets import TestDataset
from dataloaders.dataset_specifics import *
from utils import *
from config import ex
from evaluation import Evaluator
@ex.automain
def main(_run, _config, _log):
if _run.observers:
os.makedirs(f'{_run.observers[0].dir}/interm_preds', exist_ok=True)
for source_file, _ in _run.experiment_info['sources']:
os.makedirs(os.path.dirname(f'{_run.observers[0].dir}/source/{source_file}'),
exist_ok=True)
_run.observers[0].save_file(source_file, f'source/{source_file}')
shutil.rmtree(f'{_run.observers[0].basedir}/_sources')
# Set up logger -> log to .txt
file_handler = logging.FileHandler(os.path.join(f'{_run.observers[0].dir}', f'logger.log'))
file_handler.setLevel('INFO')
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s')
file_handler.setFormatter(formatter)
_log.handlers.append(file_handler)
_log.info(f'Run "{_config["exp_str"]}" with ID "{_run.observers[0].dir[-1]}"')
# Deterministic setting for reproduciablity.
if _config['seed'] is not None:
random.seed(_config['seed'])
torch.manual_seed(_config['seed'])
torch.cuda.manual_seed_all(_config['seed'])
cudnn.deterministic = True
# Enable cuDNN benchmark mode to select the fastest convolution algorithm.
cudnn.enabled = True
cudnn.benchmark = True
torch.cuda.set_device(device=_config['gpu_id'])
torch.set_num_threads(1)
_log.info(f'Create model...')
model_config = {
# 'data_dir': _config['path'][_config['dataset']]['data_dir'],
'dataset': _config['dataset'],
'PREC': _config['PREC'],
# 'train_classname': _config['train_classname'],
# 'test_classname': _config['test_classname'],
'BACKBONE_NAME': _config['BACKBONE_NAME'],
'N_CTX': _config['N_CTX'],
'CTX_INIT': _config['CTX_INIT'],
'CLASS_TOKEN_POSITION': _config['CLASS_TOKEN_POSITION'],
'INPUT_SIZE': _config['INPUT_SIZE'],
'CSC': _config['CSC'],
'INIT_WEIGHTS': _config['INIT_WEIGHTS'],
'OPTIM': _config['OPTIM'],
'PROMPT_INIT': _config['PROMPT_INIT'],
# 'classnames': _config['classnames'],
}
model = FewShotSeg(model_config, backbone='vgg16', use_original_imgsize=False)
model = nn.DataParallel(model)
model.cuda()
model.load_state_dict(torch.load(_config['reload_model_path'], map_location='cpu'), strict=False)
_log.info(f'Load data...')
data_config = {
'data_dir': _config['path'][_config['dataset']]['data_dir'],
'dataset': _config['dataset'],
'n_shot': _config['n_shot'],
'n_way': _config['n_way'],
'n_query': _config['n_query'],
'n_sv': _config['n_sv'],
'max_iter': _config['max_iters_per_load'],
'eval_fold': _config['eval_fold'],
'min_size': _config['min_size'],
'max_slices': _config['max_slices'],
'supp_idx': _config['supp_idx'],
}
test_dataset = TestDataset(data_config)
test_loader = DataLoader(test_dataset,
batch_size=_config['batch_size'],
shuffle=True,
num_workers=_config['num_workers'],
pin_memory=True,
drop_last=True)
# Get unique labels (classes).
labels = get_label_names(_config['dataset'])
# Loop over classes.
class_dice = {}
class_iou = {}
_log.info(f'Starting validation...')
for label_val, label_name in labels.items():
# Skip BG class.
if label_name == 'BG':
continue
elif (not np.intersect1d([label_val], _config['test_label'])):
continue
_log.info(f'Test Class: {label_name}')
# Get support sample + mask for current class.
support_sample = test_dataset.getSupport(label=label_val, all_slices=False, N=_config['n_part'])
# support_sample['image']: (3, 3, 256, 256)
# support_sample['label']: (3, 256, 256)
test_dataset.label = label_val
# Test.
with torch.no_grad():
model.eval()
# Unpack support data.
support_image = [support_sample['image'][[i]].float().cuda() for i in
range(support_sample['image'].shape[0])] # n_shot x 3 x H x W, support_image is a list {3X(1, 3, 256, 256)}
support_fg_mask = [support_sample['label'][[i]].float().cuda() for i in
range(support_sample['image'].shape[0])] # n_shot x H x W
# Loop through query volumes.
scores = Scores()
for i, sample in enumerate(test_loader): # this "for" loops 4 times
# Unpack query data.
query_image = [sample['image'][i].float().cuda() for i in
range(sample['image'].shape[0])] # [C x 3 x H x W] query_image is list {(C x 3 x H x W)}
query_label = sample['label'].long() # C x H x W
query_id = sample['id'][0].split('image_')[1][:-len('.nii.gz')]
prompt = _config['dataset']
# Compute output.
# Match support slice and query sub-chunck.
query_pred = torch.zeros(query_label.shape[-3:])
C_q = sample['image'].shape[1] # slice number of query img
idx_ = np.linspace(0, C_q, _config['n_part'] + 1).astype('int')
for sub_chunck in range(_config['n_part']): # n_part = 3
support_image_s = [support_image[sub_chunck]] # 1 x 3 x H x W
support_fg_mask_s = [support_fg_mask[sub_chunck]] # 1 x H x W
query_image_s = query_image[0][idx_[sub_chunck]:idx_[sub_chunck + 1]] # C' x 3 x H x W
query_pred_s = []
for i in range(query_image_s.shape[0]):
# _pred_s= model([support_image_s], [support_fg_mask_s], [query_image_s[[i]]], _, prompt, train=False) # 1 x 2 x H x W
# _pred_s= model.module.predict_mask([support_image_s], [support_fg_mask_s], [query_image_s[[i]]], _, prompt, train=False)
_pred_s, _, _, _ = model([support_image_s], [support_fg_mask_s], [query_image_s[[i]]], _, train=False) # 1 x 2 x H x W
query_pred_s.append(_pred_s)
query_pred_s = torch.cat(query_pred_s, dim=0)
query_pred_s = query_pred_s.argmax(dim=1).cpu() # C x H x W
query_pred[idx_[sub_chunck]:idx_[sub_chunck + 1]] = query_pred_s
# Record scores.
scores.record(query_pred, query_label)
# Log.
_log.info(
f'Tested query volume: {sample["id"][0][len(_config["path"][_config["dataset"]]["data_dir"]):]}.')
_log.info(f'Dice score: {scores.patient_dice[-1].item()}')
# Save predictions.
file_name = os.path.join(f'{_run.observers[0].dir}/interm_preds',
f'prediction_{query_id}_{label_name}.nii.gz')
itk_pred = sitk.GetImageFromArray(query_pred)
sitk.WriteImage(itk_pred, file_name, True)
_log.info(f'{query_id} has been saved. ')
# Log class-wise results
class_dice[label_name] = torch.tensor(scores.patient_dice).mean().item()
class_iou[label_name] = torch.tensor(scores.patient_iou).mean().item()
_log.info(f'Test Class: {label_name}')
_log.info(f'Mean class IoU: {class_iou[label_name]}')
_log.info(f'Mean class Dice: {class_dice[label_name]}')
_log.info(f'Final results...')
_log.info(f'Mean IoU: {class_iou}')
_log.info(f'Mean Dice: {class_dice}')
def dict_Avg(Dict):
L = len(Dict) # 取字典中键值对的个数
S = sum(Dict.values()) # 取字典中键对应值的总和
A = S / L
return A
_log.info(f'Whole mean Dice: {dict_Avg(class_dice)}')
_log.info(f'End of validation.')
return 1