Skip to content

The implementation of "Cross-domain Few-shot Medical Image Segmentation via Dynamic Semantic Matching"

Notifications You must be signed in to change notification settings

YazhouZhu19/DSM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cross-domain Few-shot Medical Image Segmentation via Dynamic Semantic Matching

Brief Introduction

Cross-domain few-shot medical image segmentation (CDFSMIS) presents the fundamental challenge of segmenting novel anatomical or tissue structures on unfamiliar medical imaging domains with limited annotated data. In this paper, we conduct an in-depth investigation of CDFSMIS and identify two critical observations: (a) the conventional matching mechanisms from existing few-shot models are particularly vulnerable to discrepancies in local characteristics between different domains and (b) the semantic representations learned from source domains often lack robustness when generalizing to unfamiliar target domains. Motivated by these insights, we propose a novel Dynamic Semantic Matching (DSM) framework that addresses these challenges through a three-component approach. First, we design a support-query feature re-weighting (SFR) mechanism that leverages multilevel hidden features to suppress domain-specific contents. Second, we introduce a dynamic semantic information selection (DSIS) strategy that adaptively identifies and combines domain-robust channels to construct generalizable representations. Third, we develop a dual-perspective semantic center calculation method to address the inherent texture imbalance in medical images.

About

The implementation of "Cross-domain Few-shot Medical Image Segmentation via Dynamic Semantic Matching"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published