http://datos.santander.es/resource/?ds=estado-estaciones-bicicletas&id=c798a2d2-bb27-452e-9a97-25d97b5c21ac&ft=JSON http://datos.santander.es/api/rest/datasets/tusbic_puestos_libres.json?items=17
- Copy the
template.env
file into.env
and configure it. - Create ckan_yoda network
docker network create ckan_yoda
-
Clone this project
-
Load and save the
prediction-job/santander_bike.csv
from external source
curl -o prediction-job/santander_bike.csv https://drive.upm.es/s/wsSOZIrjj8xOR3H/download
- If the model already exists (
prediction-job/model
) just build de project packages
docker compose -f docker-compose.build.packages.yml up -d --build
- If the model does not exist: Build the packages and train the model
docker compose -f docker-compose.train.yml up -d --build
-
View the spark deployment in http://localhost:4040/jobs/
-
Test that the
prediction-job/model
folder is generated with the ML model
- Run the whole scenario in dev
docker compose -f docker-compose.dev.yml up -d
-
Initialize the nifi recollection (Nifi will recollect data every 30 minutes and will store only the last 24 hours of historical data):
-
Enter in the nifi interface: https://localhost:9090/nifi
-
Log in with the following credentials:
- username: root
- password: pass1234567890
-
Upload the template stored in ./nifi/Santander_template.xml
-
Run every component deployed by the template
-
-
Create the prediction entities and the subscriptions:
-
Enter in the orion container
-
Create the predictionEntities and the subscriptions like in the
entities
folder
-
- Validate that the subscription and entities exist (inside the orion container):
curl --location --request GET 'http://localhost:1026/ngsi-ld/v1/subscriptions/'
curl --location --request GET 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-ld:ReqSantanderBikePrediction1'
curl --location --request GET 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-ld:ResSantanderBikePrediction1'
- Update the
ReqSantanderBikePrediction1
curl --location --request PATCH 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-ld:ReqSantanderBikePrediction1/attrs' \
--header 'Content-Type: application/json' \
--data-raw '{
"month":{
"type":"Property",
"value": [VALUE from 1 to 12]
},
"idStation": {
"type":"Property",
"value": [VALUE from 1 to 17]
},
"weekday":{
"type":"Property",
"value": [VALUE from 0 to 6]
},
"hour":{
"type":"Property",
"value": [VALUE from 0 to 23]
},
"predictionId":{
"type":"Property",
"value":"p-1662768034900"
},
"socketId":{
"type":"Property",
"value":"Fn0kKHEF-dOcr311AAAF"
}
}'
Being:
- idStation: station id
- month: [1, 2, 3, ..., 12]
- weekday: [1, ..., 7] (1 ->Sunday 7->Saturday)
- time: : [0, ... , 23]
- predictionId: String to identify the prediction in the consuming application
- socketId: String to identify the socket with the client in the consuming application
- See if the
ResSantanderBikePrediction1
changes
curl --location --request GET 'http://localhost:1026/ngsi-ld/v1/entities/urn:ngsi-ld:ResSantanderBikePrediction1'
Response:
{
"@context":"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld",
"id":"urn:ngsi-ld:ResSantanderBikePrediction1",
"type":"ResSantanderBikePrediction",
"socketId":{
"type":"Property",
"value":"Fn0kKHEF-dOcr311AAAF"
},
"predictionId":{
"type":"Property",
"value":"p-1662768034900"
},
"predictionValue":{
"type":"Property",
"value": [PREDICTED VALUE]
},
"idStation":{
"type":"Property",
"value": [VALUE set at the request]
},
"weekday":{
"type":"Property",
"value": [VALUE set at the request]
},
"hour":{
"type":"Property",
"value": [VALUE set at the request]
},
"month":{
"type":"Property",
"value": [VALUE set at the request]
}
- Run the whole scenario in prod within YODA (only spark). You need to create the predictionEntities and the subscriptions like in the
entities
folder. They are required the creation of entities and the subscription of spark. In the consuming application there are two possibilities:- The application receives a notification when the prediction is made and receives the
urn:ngsi-ld:ResSantanderBikePrediction1
- The application asks periodically to orion (
urn:ngsi-ld:ResSantanderBikePrediction1
) and see if the prediction was made
- The application receives a notification when the prediction is made and receives the
docker compose up -d
- Example of petition made to ask for a prediction:
curl --location --request PATCH 'http://138.4.22.130/ngsi-ld/v1/entities/urn:ngsi-ld:ReqSantanderBikePrediction1/attrs' \
--header 'Content-Type: application/json' \
--data-raw '{...}'
- Validate that the subscription and entities exist:
curl --location --request GET 'http://138.4.22.130/ngsi-ld/v1/subscriptions/'
curl --location --request GET 'http://138.4.22.130/ngsi-ld/v1/entities/urn:ngsi-ld:ReqSantanderBikePrediction1'
curl --location --request GET 'http://138.4.22.130/ngsi-ld/v1/entities/urn:ngsi-ld:ResSantanderBikePrediction1'
- Update the
ReqSantanderBikePrediction1
curl --location --request PATCH 'http://138.4.22.130/ngsi-ld/v1/entities/urn:ngsi-ld:ReqSantanderBikePrediction1/attrs' \
--header 'Content-Type: application/json' \
--data-raw '{...}'
- See if the
ResSantanderBikePrediction1
changes
curl --location --request GET 'http://138.4.22.130/ngsi-ld/v1/entities/urn:ngsi-ld:ResSantanderBikePrediction1'