Skip to content

Commit

Permalink
update drag bench evaluation code
Browse files Browse the repository at this point in the history
  • Loading branch information
Yujun-Shi committed Oct 23, 2023
1 parent 7d2e68b commit ed86b81
Show file tree
Hide file tree
Showing 8 changed files with 1,019 additions and 28 deletions.
232 changes: 232 additions & 0 deletions drag_bench_evaluation/dift_sd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
# code credit: https://github.com/Tsingularity/dift/blob/main/src/models/dift_sd.py
from diffusers import StableDiffusionPipeline
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DDIMScheduler
import gc
from PIL import Image

class MyUNet2DConditionModel(UNet2DConditionModel):
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
up_ft_indices,
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None):
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers

# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None

if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True

# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)

# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0

# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)

# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])

t_emb = self.time_proj(timesteps)

# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)

emb = self.time_embedding(t_emb, timestep_cond)

if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")

if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)

class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb

# 2. pre-process
sample = self.conv_in(sample)

# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

down_block_res_samples += res_samples

# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)

# 5. up
up_ft = {}
for i, upsample_block in enumerate(self.up_blocks):

if i > np.max(up_ft_indices):
break

is_final_block = i == len(self.up_blocks) - 1

res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]

if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)

if i in up_ft_indices:
up_ft[i] = sample.detach()

output = {}
output['up_ft'] = up_ft
return output

class OneStepSDPipeline(StableDiffusionPipeline):
@torch.no_grad()
def __call__(
self,
img_tensor,
t,
up_ft_indices,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None
):

device = self._execution_device
latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor
t = torch.tensor(t, dtype=torch.long, device=device)
noise = torch.randn_like(latents).to(device)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
unet_output = self.unet(latents_noisy,
t,
up_ft_indices,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs)
return unet_output


class SDFeaturizer:
def __init__(self, sd_id='stabilityai/stable-diffusion-2-1'):
unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder="unet")
onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None)
onestep_pipe.vae.decoder = None
onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler")
gc.collect()
onestep_pipe = onestep_pipe.to("cuda")
onestep_pipe.enable_attention_slicing()
# onestep_pipe.enable_xformers_memory_efficient_attention()
self.pipe = onestep_pipe

@torch.no_grad()
def forward(self,
img_tensor,
prompt,
t=261,
up_ft_index=1,
ensemble_size=8):
'''
Args:
img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W]
prompt: the prompt to use, a string
t: the time step to use, should be an int in the range of [0, 1000]
up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3]
ensemble_size: the number of repeated images used in the batch to extract features
Return:
unet_ft: a torch tensor in the shape of [1, c, h, w]
'''
img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w
prompt_embeds = self.pipe._encode_prompt(
prompt=prompt,
device='cuda',
num_images_per_prompt=1,
do_classifier_free_guidance=False) # [1, 77, dim]
prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1)
unet_ft_all = self.pipe(
img_tensor=img_tensor,
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds)
unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w
unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w
return unet_ft
Empty file.
Loading

0 comments on commit ed86b81

Please sign in to comment.