Skip to content

Commit

Permalink
perf: rename common fucntion name to enum/fix some bug
Browse files Browse the repository at this point in the history
  • Loading branch information
Haibin committed Sep 22, 2024
1 parent eaae58e commit 5c5a829
Showing 1 changed file with 11 additions and 9 deletions.
20 changes: 11 additions & 9 deletions geochemistrypi/data_mining/model/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ def _plot_confusion_matrix(
index = [f"true_{i}" for i in range(int(y_test.nunique().values))]
columns = [f"pred_{i}" for i in range(int(y_test.nunique().values))]
data = pd.DataFrame(data, columns=columns, index=index)
save_data(data, f"{graph_name} - {algorithm_name}", local_path, mlflow_path, True)
save_data(data, name_column, f"{graph_name} - {algorithm_name}", local_path, mlflow_path, True)

@staticmethod
def _plot_precision_recall(X_test: pd.DataFrame, y_test: pd.DataFrame, name_column: str, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
Expand Down Expand Up @@ -194,28 +194,30 @@ def _plot_precision_recall_threshold(
save_data(thresholds, name_column, f"{graph_name} - Thresholds", local_path, mlflow_path)

@staticmethod
def _plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
def _plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, name_column: str, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
print(f"-----* {graph_name} *-----")
y_probs, fpr, tpr, thresholds = plot_ROC(X_test, y_test, trained_model, graph_name, algorithm_name)
save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path)
y_probs = pd.DataFrame(y_probs, columns=["Probabilities"])
fpr = pd.DataFrame(fpr, columns=["False Positive Rate"])
tpr = pd.DataFrame(tpr, columns=["True Positive Rate"])
thresholds = pd.DataFrame(thresholds, columns=["Thresholds"])
save_data(y_probs, f"{graph_name} - Probabilities", local_path, mlflow_path)
save_data(fpr, f"{graph_name} - False Positive Rate", local_path, mlflow_path)
save_data(tpr, f"{graph_name} - True Positive Rate", local_path, mlflow_path)
save_data(thresholds, f"{graph_name} - Thresholds", local_path, mlflow_path)
save_data(y_probs, name_column, f"{graph_name} - Probabilities", local_path, mlflow_path)
save_data(fpr, name_column, f"{graph_name} - False Positive Rate", local_path, mlflow_path)
save_data(tpr, name_column, f"{graph_name} - True Positive Rate", local_path, mlflow_path)
save_data(thresholds, name_column, f"{graph_name} - Thresholds", local_path, mlflow_path)

@staticmethod
def _plot_2d_decision_boundary(X: pd.DataFrame, X_test: pd.DataFrame, trained_model: object, graph_name: str, image_config: dict, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
def _plot_2d_decision_boundary(
X: pd.DataFrame, X_test: pd.DataFrame, name_column1: str, name_column2: str, trained_model: object, graph_name: str, image_config: dict, algorithm_name: str, local_path: str, mlflow_path: str
) -> None:
"""Plot the decision boundary of the trained model with the testing data set below."""
print(f"-----* {graph_name} *-----")
print(f"-----* {graph_name} *-----")
plot_2d_decision_boundary(X, X_test, trained_model, image_config)
save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path)
save_data(X, f"{graph_name} - X", local_path, mlflow_path)
save_data(X_test, f"{graph_name} - X Test", local_path, mlflow_path)
save_data(X, name_column1, f"{graph_name} - X", local_path, mlflow_path)
save_data(X_test, name_column2, f"{graph_name} - X Test", local_path, mlflow_path)

@staticmethod
def sample_balance(X_train: pd.DataFrame, y_train: pd.DataFrame, name_column: str, local_path: str, mlflow_path: str) -> tuple:
Expand Down

0 comments on commit 5c5a829

Please sign in to comment.