Skip to content

separating cold data from hot data in LSM-based Key-value store

Notifications You must be signed in to change notification settings

Zizhao-Wang/SHCDB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SHCDB

separating cold data from hot data in LSM-based Key-value store

Project structure

The following is the directory structure of the project:

SHCDB/
│
├── workload_data_generation/ # 数据生成脚本存放目录
│ ├── data_display.py # 数据展示脚本
│ ├── etc_data_generation.py # ETC数据生成脚本
│ └── zipf_data_display.py # Zipf数据展示脚本
│
├── workloads/ # 存放生成的工作负载数据
| |
| └── dataset_description.md # 数据集描述文件 
├── README.md # 项目说明文件
└── requirements.txt # Python依赖列表

Install

Ensure that Python and pip are installed on your system. then run the following command to install the project dependencies:

pip install -r requirements.txt

Usage

To generate data using this item, follow the steps below:

git clone https://github.com/CODER-UCAS/SHCDB.git

Open a terminal and navigate to the workload_data_generation directory:

cd workload_data_generation

Run the etc_data_generation.py script to generate the dataset:

your_python_package etc_data_generation.py

Run the data_labeled.py script to add labels:

your_python_package data_labeled.py

After executing the above script, you will find a file named etc_data.csv in the workloads directory, which contains the generated simulated key-value pair operation data

Dataset Description

A detailed description of the dataset can be found in the dataset_description.md file. This file provides an explanation of each column of data in the dataset and an overall overview of the dataset.

Licenses

The project uses the MIT license. See the LICENSE file in the project for more details.

About

separating cold data from hot data in LSM-based Key-value store

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published