Skip to content

abhash-er/NASBench-PyTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NASBench-PyTorch

NASBench-PyTorch is a PyTorch implementation of the search space NAS-Bench-101 including the training of the networks**. The original implementation is written in TensorFlow, and this projects contains some files from the original repository (in the directory nasbench_pytorch/model/).

Overview

A PyTorch implementation of training of NAS-Bench-101 dataset: NAS-Bench-101: Towards Reproducible Neural Architecture Search. The dataset contains 423,624 unique neural networks exhaustively generated and evaluated from a fixed graph-based search space.

Usage

You need to have PyTorch installed.

You can install the package by running pip install nasbench_pytorch. The second possibility is to install from source code:

  1. Clone this repo
git clone https://github.com/romulus0914/NASBench-PyTorch
cd NASBench-PyTorch
  1. Install the project
pip install -e .

The file main.py contains an example training of a network. To see the different parameters, run:

python main.py --help

Train a network by hash

To train a network whose architecture is queried from NAS-Bench-101 using its unique hash, install the original nasbench repository. Follow the instructions in the README, note that you need to install TensorFlow. If you need TensorFlow 2.x, install this fork of the repository instead.

Then, you can get the PyTorch architecture of a network like this:

from nasbench_pytorch.model import Network as NBNetwork
from nasbench import api


nasbench_path = '$path_to_downloaded_nasbench'
nb = api.NASBench(nasbench_path)

net_hash = '$some_hash'  # you can get hashes using nasbench.hash_iterator()
m = nb.get_metrics_from_hash(net_hash)
ops = m[0]['module_operations']
adjacency = m[0]['module_adjacency']

net = NBNetwork((adjacency, ops))

Then, you can train it just like the example network in main.py.

Architecture

Example architecture (picture from the original repository) archtecture

Disclaimer

Modified from NASBench: A Neural Architecture Search Dataset and Benchmark. graph_util.py and model_spec.py are directly copied from the original repo. Original license can be found here.

**Please note that this repo is only used to train one possible architecture in the search space, not to generate all possible graphs and train them.

About

A PyTorch implementation of NASBench

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%