git clone github.com/quan-dao/mixed-signals-devkit
cd mixed-signals-devkit
pip install -r requirements.txt
python setup.py developgit clone <this_repo>
cd OpenCOOD
pip install -r requirements.txt
python opencood/utils/setup.py build_ext --inplace
python opencood/pcdet_utils/setup.py build_ext --inplace
python setup.py developDownload our dataset from ???.
After unpacking the ???.zip file, the structure of the dataset directory is as following
mixed-signals
├── Odometry
│ ├── mini_17
│ ├── mini_21
│ ├── mini_4
│ └── ...
├── PointClouds
│ ├── mini_17
│ ├── mini_21
│ ├── mini_4
│ └── ...
└── V2X_dataset-v0.4-labels.jsonThe Odometry directory contains csv files that store the localisation of vehicles existing in each segment of our dataset. For example,
mini_17
├── odometry_003.csv
├── odometry_004.csv
└── odometry_laser.csvThe PointClouds directory contains pcd files that store the point cloud of each agent, including 3 vehicles and 2 road-side lidars, at every syncrhonized time step of each segment. For example,
mini_17
├── top_1_1712121711.218860737.pcd
├── dome_1_1712121711.224186066.pcd
├── 003_1_1712121711.188474014.pcd
├── 004_1_1712121711.204070535.pcd
├── laser_1_1712121711.215227296.pcd
├── ...The naming convetion of point cloud files is
<agent_name>_<index_of_synchronized_timestep_in_a_segment>_<time_stamp_this_pointcloud>.pcdThe time stamp contains two parts:
- before the decimal point: seconds
- after the decimal point: nanoseconds
cd OpenCOOD
python opencood/tools/msig_dataset_preprocessing.pyThis script creates train_gt_infos.pkl and test_gt_infos.pkl in the root directory of Mixed Signals dataset.
Download check points from ??? and put them in OpenCOOD/ckpt
Create a directory to store the evaluation result
cd OpenCOOD
mkdir outputEvaluate Early fusion
cd OpenCOOD
python opencood/tools/inference.py --hypes_yaml opencood/hypes_yaml/msig_pillar_early.yaml --ckpt pointpillar_early_fusion.pth --fusion_method early --save_eval_result_to_directory outputLate Fusion
cd OpenCOOD
python opencood/tools/inference.py --hypes_yaml opencood/hypes_yaml/msig_pillar_late.yaml --ckpt pointpillar_no_fusion_net_epoch20.pth --fusion_method late --save_eval_result_to_directory output