-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
205 lines (172 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# _*_ coding: utf-8 _*_
# @Time : 2020/12/17
# @Author : Chenfei Wang
# @File : main.py
# @desc :
# @note :
import argparse
import datetime
import glob
import os
from pathlib import Path
import torch
import torch.distributed as dist
import torch.nn as nn
from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from pcdet.datasets import build_dataloader
from pcdet.models import build_network, model_fn_decorator
from pcdet.utils import common_utils
from tensorboardX import SummaryWriter
from architecture import SATGCN
from test import repeat_eval_ckpt
from train_utils.optimization import build_optimizer, build_scheduler
from train_utils.train_utils import train_model
# python -m torch.distributed.launch --nproc_per_node=4 main.py --launcher pytorch --batch_size 4
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default='cfgs/FE_DISS.yaml', help='specify the config for training')
parser.add_argument('--batch_size', type=int, default=8, required=False, help='batch size for training')
parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for')
parser.add_argument('--workers', type=int, default=8, help='number of workers for dataloader')
parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn')
parser.add_argument('--fix_random_seed', action='store_true', default=False, help='')
parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs')
parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint')
parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='')
parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
help='set extra config keys if needed')
parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes')
parser.add_argument('--start_epoch', type=int, default=0, help='')
parser.add_argument('--save_to_file', action='store_true', default=False, help='')
args = parser.parse_args()
cfg_from_yaml_file(args.cfg_file, cfg)
cfg.TAG = Path(args.cfg_file).stem
cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml'
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs, cfg)
return args, cfg
if __name__ == '__main__':
args, cfg = parse_config()
if args.launcher == 'none':
dist_train = False
total_gpus = 1
else:
total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(
args.tcp_port, args.local_rank, backend='nccl'
)
dist_train = True
if args.batch_size is None:
args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU
else:
assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus'
args.batch_size = args.batch_size // total_gpus
args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs
if args.fix_random_seed:
common_utils.set_random_seed(666)
cfg.ROOT_DIR = (Path(os.environ['HOME']) / 'work_dir').resolve()
output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag
ckpt_dir = output_dir / 'ckpt'
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir.mkdir(parents=True, exist_ok=True)
log_file = output_dir / ('log_train_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK)
# log to file
logger.info('**********************Start logging**********************')
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
if dist_train:
logger.info('total_batch_size: %d' % (total_gpus * args.batch_size))
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
log_config_to_file(cfg, logger=logger)
if cfg.LOCAL_RANK == 0:
os.system('cp %s %s' % (args.cfg_file, output_dir))
tb_log = SummaryWriter(log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None
# -----------------------create dataloader & network & optimizer---------------------------
train_set, train_loader, train_sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=dist_train, workers=args.workers,
logger=logger,
training=True,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch,
total_epochs=args.epochs
)
# model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set)
model = SATGCN(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set, args=args)
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
optimizer = build_optimizer(model, cfg.OPTIMIZATION)
# load checkpoint if it is possible
start_epoch = it = 0
last_epoch = -1
if args.pretrained_model is not None:
model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist, logger=logger)
if args.ckpt is not None:
it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist, optimizer=optimizer, logger=logger)
last_epoch = start_epoch + 1
else:
ckpt_list = glob.glob(str(ckpt_dir / '*checkpoint_epoch_*.pth'))
if len(ckpt_list) > 0:
ckpt_list.sort(key=os.path.getmtime)
it, start_epoch = model.load_params_with_optimizer(
ckpt_list[-1], to_cpu=dist, optimizer=optimizer, logger=logger
)
last_epoch = start_epoch + 1
model.train() # before wrap to DistributedDataParallel to support fixed some parameters
if dist_train:
model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()], find_unused_parameters=True)
#model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()])
logger.info(model)
lr_scheduler, lr_warmup_scheduler = build_scheduler(
optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs,
last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION
)
logger.info('**********************Start training %s/%s(%s)**********************'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
train_model(
model,
optimizer,
train_loader,
model_func=model_fn_decorator(),
lr_scheduler=lr_scheduler,
optim_cfg=cfg.OPTIMIZATION,
start_epoch=start_epoch,
total_epochs=args.epochs,
start_iter=it,
rank=cfg.LOCAL_RANK,
tb_log=tb_log,
ckpt_save_dir=ckpt_dir,
train_sampler=train_sampler,
lr_warmup_scheduler=lr_warmup_scheduler,
ckpt_save_interval=args.ckpt_save_interval,
max_ckpt_save_num=args.max_ckpt_save_num,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch
)
logger.info('**********************End training %s/%s(%s)**********************\n\n\n'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
logger.info('**********************Start evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
test_set, test_loader, sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=dist_train, workers=args.workers, logger=logger, training=False
)
eval_output_dir = output_dir / 'eval' / 'eval_with_train'
eval_output_dir.mkdir(parents=True, exist_ok=True)
args.start_epoch = max(args.epochs - 10, 0) # Only evaluate the last 10 epochs
repeat_eval_ckpt(
model.module if dist_train else model,
test_loader, args, eval_output_dir, logger, ckpt_dir,
dist_test=dist_train
)
logger.info('**********************End evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))