Deep Factorization Machine Model for CRT prediction.
- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (Paper)
- Factorization Machines
- Sistemas de Recomendación (Parte 1): Filtros Colaborativos | Clase 22 | Aprendizaje Profundo 2021
- Factorization Machine models in PyTorch
Step 1: Clone repo.
$ git clone https://github.com/adrianmarino/deep-fm.git
$ cd deep-fm
Step 2: Create environment.
$ cd dfm
$ conda env create -f environment.yml
Step 3: Enable project environment.
$ conda activate deepfm
Step 3: Run regression tests.
$ pytest
$ python bin/train
$ python bin/train --help
Usage: train [OPTIONS]
Options:
--device TEXT Device used to functions and optimize model.
Values: gpu(default) or cpu.
--cuda-process-memory-fraction FLOAT
Setup max memory used per CUDA process.
Percentage expressed between 0 and
1(default: 0.5).
--dataset TEXT Select movie lens dataset type. Values:
1m(default), 20m.
--cv-n-folds INTEGER cross validation n folds(default: 10).
--train-percent FLOAT Observations percent to used on training
process(default: 0.7).
--help Show this message and exit.