Skip to content

Deep Factorization Machine Model for CRT prediction.

Notifications You must be signed in to change notification settings

adrianmarino/deep-fm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepFM

Deep Factorization Machine Model for CRT prediction.

References

Notebooks

Requisites

Getting started

Step 1: Clone repo.

$ git clone https://github.com/adrianmarino/deep-fm.git
$ cd deep-fm

Step 2: Create environment.

$ cd dfm
$ conda env create -f environment.yml

Step 3: Enable project environment.

$ conda activate deepfm

Step 3: Run regression tests.

$ pytest

Training

$ python bin/train
$ python bin/train --help

Usage: train [OPTIONS]

Options:
  --device TEXT                   Device used to functions and optimize model.
                                  Values: gpu(default) or cpu.
  --cuda-process-memory-fraction FLOAT
                                  Setup max memory used per CUDA process.
                                  Percentage expressed between 0 and
                                  1(default: 0.5).
  --dataset TEXT                  Select movie lens dataset type. Values:
                                  1m(default), 20m.
  --cv-n-folds INTEGER            cross validation n folds(default: 10).
  --train-percent FLOAT           Observations percent to used on training
                                  process(default: 0.7).
  --help                          Show this message and exit.

About

Deep Factorization Machine Model for CRT prediction.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published