-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from lyt910522/master
add frost metric
- Loading branch information
Showing
9 changed files
with
187 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
""" Test case for Torch """ | ||
|
||
from __future__ import absolute_import | ||
|
||
import torch | ||
import torchvision.models as models | ||
import numpy as np | ||
from perceptron.models.classification.pytorch import PyTorchModel | ||
from perceptron.utils.image import imagenet_example | ||
from perceptron.benchmarks.frost import FrostMetric | ||
from perceptron.utils.criteria.classification import Misclassification | ||
from perceptron.utils.tools import plot_image | ||
from perceptron.utils.tools import bcolors | ||
|
||
# instantiate the model | ||
resnet18 = models.resnet18(pretrained=True).eval() | ||
if torch.cuda.is_available(): | ||
resnet18 = resnet18.cuda() | ||
|
||
# initialize the PyTorchModel | ||
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) | ||
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) | ||
fmodel = PyTorchModel( | ||
resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) | ||
|
||
# get source image and print the predicted label | ||
image, _ = imagenet_example(data_format='channels_first') | ||
image = image / 255. # because our model expects values in [0, 1] | ||
|
||
# set the type of noise which will used to generate the adversarial examples | ||
metric = FrostMetric(fmodel, criterion=Misclassification()) | ||
|
||
# set the label as the predicted one | ||
label = np.argmax(fmodel.predictions(image)) | ||
|
||
print(bcolors.BOLD + 'Process start' + bcolors.ENDC) | ||
# set 'unpack' as false so we can access the detailed info of adversary | ||
adversary = metric(image, label, scenario=5, verify=True, unpack=False) | ||
print(bcolors.BOLD + 'Process finished' + bcolors.ENDC) | ||
|
||
if adversary.image is None: | ||
print( | ||
bcolors.WARNING + | ||
'Warning: Cannot find an adversary!' + | ||
bcolors.ENDC) | ||
exit(-1) | ||
|
||
################### print summary info ##################################### | ||
|
||
keywords = ['PyTorch', 'ResNet18', 'Misclassification', 'Frost'] | ||
|
||
true_label = np.argmax(fmodel.predictions(image)) | ||
fake_label = np.argmax(fmodel.predictions(adversary.image)) | ||
|
||
# interpret the label as human language | ||
with open('perceptron/utils/labels.txt') as info: | ||
imagenet_dict = eval(info.read()) | ||
|
||
print(bcolors.HEADER + bcolors.UNDERLINE + 'Summary:' + bcolors.ENDC) | ||
print('Configuration:' + bcolors.CYAN + ' --framework %s ' | ||
'--model %s --criterion %s ' | ||
'--metric %s' % tuple(keywords) + bcolors.ENDC) | ||
print('The predicted label of original image is ' | ||
+ bcolors.GREEN + imagenet_dict[true_label] + bcolors.ENDC) | ||
print('The predicted label of adversary image is ' | ||
+ bcolors.RED + imagenet_dict[fake_label] + bcolors.ENDC) | ||
print('Minimum perturbation required: %s' % bcolors.BLUE | ||
+ str(adversary.distance) + bcolors.ENDC) | ||
print('Verifiable bound: %s' % bcolors.BLUE | ||
+ str(adversary.verifiable_bounds) + bcolors.ENDC) | ||
print('\n') | ||
|
||
plot_image(adversary, | ||
title=', '.join(keywords), | ||
figname='examples/images/%s.png' % '_'.join(keywords)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Copyright 2019 Baidu Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Metric that tests models against frost variations.""" | ||
|
||
import numpy as np | ||
from tqdm import tqdm | ||
from collections import Iterable | ||
from .base import Metric | ||
from .base import call_decorator | ||
from PIL import Image | ||
import warnings | ||
|
||
|
||
class FrostMetric(Metric): | ||
"""Metric that tests models against frost variations.""" | ||
|
||
@call_decorator | ||
def __call__(self, adv, scenario=5, annotation=None, unpack=True, | ||
abort_early=True, verify=False, epsilons=1000): | ||
"""Change the frost of the image until it is misclassified. | ||
Parameters | ||
---------- | ||
adv : `numpy.ndarray` | ||
The original, unperturbed input as a `numpy.ndarray`. | ||
scenario : int or PIL.Image | ||
Choice of frost backgrounds. | ||
annotation : int | ||
The reference label of the original input. Must be passed | ||
if `a` is a `numpy.ndarray`. | ||
unpack : bool | ||
If true, returns the adversarial input, otherwise returns | ||
the Adversarial object. | ||
abort_early : bool | ||
If true, returns when got first adversarial, otherwise | ||
returns when all the iterations are finished. | ||
verify : bool | ||
If True, return verifiable bound. | ||
epsilons : int or Iterable[float] | ||
Either Iterable of contrast levels or number of brightness | ||
factors between 1 and 0 that should be tried. Epsilons are | ||
one minus the brightness factor. Epsilons are not used if | ||
verify = True. | ||
""" | ||
|
||
if verify is True: | ||
warnings.warn('epsilon is not used in verification mode ' | ||
'and abort_early is set to True.') | ||
|
||
a = adv | ||
del adv | ||
del annotation | ||
del unpack | ||
|
||
image = a.original_image | ||
min_, max_ = a.bounds() | ||
axis = a.channel_axis(batch=False) | ||
hw = [image.shape[i] for i in range(image.ndim) if i != axis] | ||
img_height, img_width = hw | ||
|
||
if not isinstance(epsilons, Iterable): | ||
epsilons = np.linspace(0, 1, num=epsilons)[1:] | ||
else: | ||
epsilons = epsilons | ||
|
||
if isinstance(scenario, Image.Image): | ||
frost_img_pil = scenario | ||
elif isinstance(scenario, int): | ||
frost_img_pil = Image.open( | ||
'perceptron/utils/images/frost{0}.png'.format(scenario)) | ||
else: | ||
raise ValueError( | ||
'scenatiro has to be eigher int or PIL.Image.Image') | ||
|
||
frost_img = np.array( | ||
frost_img_pil.convert('RGB').resize( | ||
(img_width, img_height))).astype( | ||
np.float32) / 255. | ||
frost_img = frost_img * max_ | ||
if(axis == 0): | ||
frost_img = np.transpose(frost_img, (2, 0, 1)) | ||
|
||
cc0 = [1.0, 0.5] | ||
cc1 = [0.3, 0.8] | ||
for _, epsilon in enumerate(tqdm(epsilons)): | ||
p0 = cc0[0] + epsilon * (cc0[1] - cc0[0]) | ||
p1 = cc1[0] + epsilon * (cc1[1] - cc1[0]) | ||
perturbed = image * p0 + frost_img * p1 | ||
perturbed = np.clip(perturbed, min_, max_) | ||
|
||
_, is_adversarial = a.predictions(perturbed) | ||
if is_adversarial: | ||
if abort_early or verify: | ||
break | ||
else: | ||
bound = epsilon | ||
a.verifiable_bounds = (bound, None) | ||
|
||
return |
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.